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ABSTRACT 

A solution is given of the generalized Dirichlet problem for an arbitrary 
compactification of a Brelot harmonic space. A method of obtaining the 
Martin-Choquet integral representation of positive harmonic functions is given, 
and the existence is established of an ideal boundary A supporting the maximal 
representing measures for positive bounded and quasibounded harmonic 
functions with almost all points of A being regular for the Dirichlet problem. 

1. Introduction 

In this paper  we shall use s tandard  methods  of  potential  theory  and A b r a h a m  

Robinson ' s  nons tandard  analysis [33] to extend potent ial  theoret ic  propert ies  of  

the unit disc to more  general  domains.  In particular, we shall establish the 

existence of an ideal boundary  A for  a general  domain  that is similar to the 

boundary  of R. S. Mart in [29] in terms of  represent ing bounded  and quasi- 

bounded  harmonic  functions. The  boundary  A, however ,  has the proper ty  that 

almost  all points (with respect to harmonic  measure)  are regular  for the Dirichlet 

problem. M. G. Shur  [35] has shown that the Mart in boundary  does not,  in 

general,  have this proper ty .  

The  results of  this paper  will be established in the setting of M. Brelot ' s  

axiomatic potential  theory  [4], [5]. In addition, we assume that 1 is superhar-  

monic.  Examples  of this axiomatic setting are given by harmonic  functions and 

indeed by the C2-solutions u of  an elliptic differential equat ion of the form 

* This work was supported by a grant from the U. S. National Science Foundation. The results in 
Sections 1-5 were presented at the 1974 Oberwolfach Conferences on Potential Theory and 
Nonstandard Analysis; Sections 1-6 were discussed at the Abraham Robinson Memorial Confer- 
ence, Yale, University, May 1975. 
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a2u + ~ au 
E a,k ax, cgx--'--'~ b'-~x~ + cu = 0 

on a region in Euclidean space where E a,kx~xk is a positive definite quadratic 

form, the coefficients of the equation satisfy a local Lipschitz condition, and 

c _-< 0. (See [18,chap. VII], and [12, p. 326].) Brelot 's axioms are also satisfied by 

the solutions of Au = Pu on an open Riemann surface W, where P is a smooth 

nonnegative density on W (see [22]). Any result established here is established 

for each of these special cases with no further verification being necessary. The 

reader who is interested in only one of the cases subsumed by Brelot 's theory can 

of course read this paper with the assumption that the case of interest is the one 

under discussion. 

Recall that the Dirichlet problem has two parts. First, given a connected open 

set U with 0 compact, associate with each continuous real-valued function [ on 

c~U = 0 -  U a harmonic function H( f )  on U so that the mapping f - ->H(f)  is 

positive and linear, and so that if we have a superharmonic function v on U (see 

Section 2) with lim inf v _-> [ on 3U, then v >- H([)  on U. If this can be done and g 

is continuous on t]  and harmonic on U, then H(g [3U) = g [ U. Moreover,  by 

the Riesz representation theorem, there is on aU a Borel measure, denoted by 

p.~ or just /zx, for each x ~ U such that 

H if) (x) = f~u Ida 

for each continuous f on OU. The measure/x ~ is called harmonic measure for x 

with respect to U. 

The second part of the Dirichlet problem is to determine which points y ~ OU 

have the property that 

lim H ([) (x) = [ (y )  
x E U  
x ~ y  

for each continuous [ on OU. Points with this property are called regular points 

on OU, and if all points on aU are regular, then 3U or just U is called regular. If 

U is regular, the mapping f ~  H( f )  is uniquely determined. 

In general, integrability with respect to tzx is independent of the choice of 

x ~ U. If f_>- 0 is integrable on OU, then its integral, as a function of x, is 

harmonic and either identically zero or everywhere positive. (See [4] or [22].) 

Thus the measures /zx are mutually absolutely continuous; the corresponding 

Radon-Nikodym derivatives will be central to the results that follow. 
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As is well known, the open unit disc D = {z ~ C ; [ z [ <  1} with boundary 

OD = {z E C:[z [ = 1} is regular for the Dirichlet problem. For any continuous f 

on OD and any point a E D, 

1 a 2 ( z ) ;  H ( f ) (a)= ~---~ f,,=, [lzjall2f(z)dO 

here dO refers to Lebesgue measure on OD. Martin 's  generalization of the 

Poisson Kernel P(z, a)  = (1 - l a  12)/I z - a [2 is obtained as a limit of normalized 

Green ' s  functions. We shall instead consider a function q(z, a) which is the limit 

as b ~ z of functions which for the disc D and a, b E D have the form 

1 f P(z ,a )P(z ,b )dO(z ) .  q (b, a ) = ~---~ zr=~ 

We briefly review some important  aspects of potential theory for D that will 

be generalized with the kernel q. 

1) If x0 is the origin and x E D, then d/z~o = (1/2zr)dO and P ( . ,  x)  = dlx,/dlz,~. 
2) If z E OD, then P(z , . )  is a minimal harmonic function with P(z, Xo)= 1. 

This means that if h is harmonic on D and 0 < h(x) <= P(z, x) for each x E D, 

then h = hP(z, . )  for some h -< 1. 

3) (Herglotz, 1911) For each positive harmonic function h on D, there is a 

measure ph on OD such that for each x E D, 

h(x) = ~o e(z, x) do.(z). 

4) (Fatou, 1906) Each positive harmonic function h on D has finite radial 

limits f ( z )  at almost all points z C OD (with respect to Lebesgue measure). If h 

is bounded or the limit of an increasing sequence of bounded harmonic 

functions, i.e., quasibounded, then for any Borel set A CaD,  

P.(a)=lfAfdO=fAfd~o=fAfdP,.  

This paper  has six sections. In Section 2 we discuss Brelot 's  potential theory 

for a harmonic space W and give nonstandard interpretations of some of the 

results in that theory. In Section 3 we use a nonstandard internal region ~ C* W 

with a12 contained in the monad of the one point compactification of W to 

obtain a solution of the first part of the Dirichlet problem for any compactifica- 

tion of W. By standardizing a nonstandard measure space on al~ as in [25], we 

obtain in Section 4 a new construction of the Mart in-Choquet  integral represen- 

tation for positive harmonic functions on W. In Section 5 we review properties of 
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the harmonic part  F of the Wiener compactification that are needed in Section 6. 

We also establish a criterion for characterizing points of F due to A. Cornea and 

the author. In Section 6 we obtain a compactification of W with the property 

that every point of A = if" - W corresponds to a non-negative harmonic function 

and almost all points (with respect to harmonic measure) on A correspond to 

positive minimal harmonic functions and are regular. If h is a bounded or 

quasibounded positive harmonic function on W, then the maximal representing 

measure for h is supported by the points of A corresponding to minimal 

harmonic functions. A generalization of Fatou 's  theorem is valid for A. 

We assume that the reader  is familiar with nonstandard analysis (see [33]). We 

shall be working with a denumerably  comprehensive enlargement.  This means 

that if S is a standard set and A ,  is internal with A ,  E *S for each n ~ N, then 

the external sequence {A, : n E N} is the restriction to N of an internal function 

from *N into *S. Enlargements  which are ultrapowers or ~1 saturated models 

have this property.  (See [28, pp. 27-35].) 

The notation used here is the same as in [22] and [33] with a few exceptions. 

The symbol /z is used to denote  harmonic measure and m(a) to denote  the 

monad of a. If a and b are in the extension *R of the real numbers R, then 

a = b means that a - b E rn (0). We write ~ to denote  the unique real number  r 

with a ---- r if a is finite, i.e., l a I < n for some natural number  n. Otherwise, 

~ = + ~ if a is positive and infinite and ~ = - ~ if a is negative and infinite. As 

usual, *N, *R and *C denote nonstandard extensions of the natural numbers N, 

the real numbers  R and the complex numbers C respectively; R+ denotes the 

positive real numbers.  

A constant function with value c is denoted by r If f is a function and A is 

contained in its domain, then f I A denotes the restriction of f to A. Instead of 

limx~A . . . . .  f(x), liminfx~A . . . . .  f(X), and l imsup~A . . . . .  f(X), we simply write 

limAf(xo), lira infAf(Xo), and lim supaf(xo) respectively. Recall for example,  that 

l i m s u p f ( x o ) =  inf ( s u p  f ( x ) ) ,  
A UE.N'(xO) \ x E U A A  

where N(x0) is the family of neighborhoods of x0. If f and g are real-valued 

functions with domain B, then f ^ g and f v g are defined for each x E B by 

f ^ g (x) --- min (f(x), g (x)) and f v g (x) = max (f(x), g (x)). The family of all 

continuous real-valued functions on a set B is denoted by C(X). 
By a region, we mean a connected open set; an inner region in a set W is one 

for which the closure in W is compact.  If x is a point in a compact  Hausdorff  

space with topology S-, then the monad of x, re(x) is given by m(x)= 



158 P.A.  LOEB Israel J. Math. 

n x ~ t , ~ * U ;  we write x =~  for each y E m(x) .  The topology of uniform 

convergence on compact sets is called the u.c.c, topology. The symbol II denotes 

the end of a proof. 

2. Brelot's  potential theory 

We shall here review and give some nonstandard interpretations of the 

potential theory of Marcel Brelot. (See [5] or [6] or [22].) The domain in question 

is a locally compact Hausdorff space W which is connected and locally 

connected but not compact. Let /g' be a family of real-valued continuous 

functions called harmonic functions. We assume that each f E ~ has an open 

domain 5~(]') in W and for each open set I ICW ,  ~ , =  { rE  ~ : ~ ( f ) = l l }  is a 

real vector space. We further assume that ~ satisfies the following three axioms 

of Brelot derived in part from previous axiom systems of J. L. Doob and G. L. 

Tautz (see the second part of [5]) and later generalized by H. Bauer [3] and 

Constantinescu and Cornea [10]. 

Axiom I. A function g with an open domain l l  C W is an element of ~ if for 

every point x E l I  there is an h ~ ~( and an open set to such that x ~ to C II and 

g [ t o - -  h [to. 

AXIOM II. There is a base for the topology of W consisting of inner regions 

which are regular for the Dirichlet problem. (See Section 1.) 

AxioM III. I f  II C W is a region and J; C ~(~ is a family directed by increasing 

order (i.e., Vf~, f2 E ~, 3f3 E ~ with f3 >- f~ v f2) then the upper envelope of ~ is in 

~( i~ it is finite at any point of fL 

It follows from Axiom I that the restriction of a harmonic funotion to an open 

subset of its domain is harmonic. It is sufficient to assume Axiom III only for 

increasing sequences of harmonic functions; the general case then follows (see 

[81). 
As in Section 1, we let /z~ or just/.tx denote harmonic measure for x and ~.  It 

follows from Axioms I and II that the uniform limit of harmonic functions is 

harmonic, since the integral with respect to harmonic measure of such a limit h is 

equal to h. 

Axiom III is called Harnack's principle. In 1964, Gabriel Mokobodski used 

Axioms I and II and the existence of Radon-Nikodym derivatives of harmonic 

measures with respect to a fixed harmonic measure to show the equivalence of 

Harnack's  principle (Axiom III) and Harnack's inequality, given below as 
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Axiom III ' .  His result was established for those harmonic spaces (~,  W) for 

which W has a countable base for its topology. Ber t ram Walsh and the author 

[26] extended his result to arbitrary Brelot harmonic spaces. 

AXIOM III ' .  If  lq is a region in W, then every nonnegative function in ~ is 
either identically equal to 0 or has no zeros in [1. Furthermore, for any point 
Xo Ef l ,  the set 

qbxno={hE~a :h=>0  and h(xo)=l} 

is equicontinuous at Xo. 

A consequence of Axiom I I I '  is the fact that for any region f l  and any compact  

subset K CO, there is a constant M -> 1 such that for each h => 0 in ~ n  and each 

pair of points x~ and x: in K, the relation 

(1) 1 .  h(x,)< = h(x2) <__ M .  h(x,) 
M 

holds. Moreover,  for any point x E l-I and any constant M >  1, there is a 

compact  neighborhood K of x in which (1) holds. 

Associated with a harmonic class ~ are the families of superharmonic and 

subharmonic functions. Recall that a function f is lower semicontinuous on a set 

A if for each x E A, 

- oo < f (x )  =< lim i n f f ( x ) .  
A-(x} 

DEFINITION. A lower semicontinuous function v with open domain f l  C W is 

called superharmonic (with respect to ~ )  and we write v ~ ~,a or just v ~ ~ '  if 

v(x) < + ~ for some point x in each component  1) and 

v(x)>= fau vdl .~ 

for each regular inner region U with 0 CO and each x E U. If - w E 2 ,  then w 

is called subharmonic and we write w ~ ~ .  A superharmonic function whose 

greatest harmonic minorant  is 0 is called a potential. 

For a local definition of ~e, see [4] or [22, p. 174]. A function h is harmonic if 

and only if it is superharmonic and subharmonic.  If vl and vz are in ~'a for some 

open f l C W  and a E R  +, v,+vz, av~ and V~AV2 are in go .  To obtain a 

minimum principle for ~ ,  and thus a maximum principle for _~, we shall assume 

hereafter  that ~ satisfies the following axiom. 
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AXIOM IV. The function 1 is in ~w. 

With this axiom and Axiom III, it follows that if l'l is a region and v E ~ a  

takes a minimum value a in fl, then either v = a in lI or a > 0. (See section 2 of 

[22].) 

From this point on, we assume that W and W are fixed, and we choose a 

denumerably comprehensive enlargement of a mathematical structure contain- 

ing the real numbers and W. 

Given Xo E W, it is well known that the family 

O~ o {hE~ t 'w :h>=0 ,  h(xo)_-<l} 

is compact in the u.c.c, topology. We shall need a nonstandard interpretation of 

a slightly more general result. Recall Robinson's fundamental theorem ([33, p. 

93]), that a topological space A is compact if and only if for each y E *A there is 

an x E A  with y ~ m ( x ) .  

PROPOSITION 2.1. Given a region II C W, a point Xo ~ lI, numbers m >- 0 and 

M>-O in R, let 

= { h E ~ a : - m _ - < h  on t1 and h(xo)--N_M}. 

Then ~ is equicontinuous on 1) and compact with respect to the u.c.c, topology 

which is the same as the topology of pointwise convergence on ~;. That is, given f in 

the non-standard extension * ~ of J; there is a standard h ~ g]; such that on each 

standard compact K C [I 

sup I f ( y ) -  *h (Y)I = 0 .  
yE*K 

PROOF. Fix x~ E 1). By corollary 4.2 of [22], there is a regular inner region U 

with XoE U, xz E U and 0 CO. Let H(1) be the function which is continuous on 

0 and harmonic on U with H(1) I O -  U = 1. Then c = minx~oH(1)>0 .  By 

Harnack's inequality, the family 

{h l U + m H ( 1 ) : h  E ~}  

is bounded and equicontinuous at xl. Therefore  the family ~ itself is bounded 

and equicontinuous at the arbitrary point XlE f~ and thus at every x E f~. 

Let ~rp and 5r ...... denote the topology of pointwise convergence and the u.c.c. 

topology respectively on the space of real-valued functions on IL The ~rp_closure 

of ~, ~P, is equicontinuous on 1). It is well known and easy to prove that ffp and 
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3 ...... are the same on an equicontinuous family such as ~P. Since ~P is 

9-p-compact, it is 9- ...... -compact.  Any point in 5 ~ is the uniform limit of 

harmonic functions and is, therefore, in ~;. Thus ~ = ff, P is compact.  II 

Let 12 be a region in W, and let f be an element of *~n  such that f is bounded 

below by some standard real number  and f is finite at some standard point 

Xo E 12. Let h be defined on fI by setting h (x) = ~ for each x E 12. We have 

just shown that h E 9~;  we shall call h the standard part of f and write h -- of. 

A countable exhaustion of W is an increasing sequence of sets A~ CA2" "" C 

A , ' . . ,  with W = I..JT=,A,. Using results in [8] and the validity of Harnack ' s  

inequality in an arbitrary harmonic space [26], A. Cornea has established the 

existence of a countable exhaustion of W by compact sets. It follows that if 

x0 E W and 

q ~ ' , = { h E ~ w : h = > 0  and h(xo) <1} 

t then qbx o with the u.c.c, topology is a metric space. Here  we may let the metric 

d = ET=, (1/(2"c,))d,, where for each n E N, K, is the nth compact  set in a 

countable exhaustion of W by compact sets, 

and for f, h @ ~o,  

c , =  2sup I h (y ) r ,  
y ~ K n ,  h E d i ~  0 

d.( f ,h)= sup I f ( Y ) -  h ( y ) l .  
y~K, 

It also follows from Cornea 's  result and a theorem due to R.-M. Herv6 and the 

author ([22, p. 184]), that there is a countable exhaustion of W by regular inner 

regions in W. Given such an exhaustion {12, : n E N}, to what use can we put the 

existence of 12, where y E *N - N?  For this paper  we will only use the fact that 

the first part of the Dirichlet problem is solvable for an inner region. 

DEFINITION. Let 12 be a standard region in W with closure (~ in some fixed 

compactification of W. Let f be a bounded real-valued function on (~-12.  The 

upper  Bre lo t -Wiener -Per ron  enve lope /4( f ,  12) of f is the lower envelope of the 

se t  

{v ~ ~,:  lim inf v(x ) > f(x ) Vx ~ (~-12}. 
N 

The lower envelope H(f, 12) is - / - t (  - f, 12). Since 1 ~ ~w,/-/(f ,  12) =< H(/ ,  fl). We 

say that f is resolutive if/4(.f, 12) =/- /(f ,  fl), and we say that ~ - 12 is resolutive if 

each f E C ( ~ - f l )  is, in which case H(fi12) denotes the unique solution 
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/--I(f, f l ) =  _H(/, f~) of the first part of the Dirichlet problem for ~ as defined in 

Section 1. 

PROPOSITION 2.2 (Brelot, Herv6). If ~ is an inner region in W, then ~ -  ft is 
resolutive. 

PROOF. See Herv6 [18, iemma 6.1] and Brelot [4, p. 111]. That the hypothesis 

of HervCs result is satisfied, i.e., that there is a positive potential defined on ~,  

has been established by the author in [22, theor. 6.8]. II 

3. A solution of the Dirichlet problem 

In this section we generalize N. Wiener's solution of the Dirichlet problem 

[36], [37] to arbitrary compactifications (e.g., the Stone-Cech compactification) 

of the harmonic space W. For resolutive compactifications of W, the solution 

agrees with that given by the Brelot-Wiener-Perron method defined in 

Section 2. 

DEFINITION. If f t  is an internal inner region in *W and * K C I )  for each 

standard compact set K C W, then we shall say that the boundary of l) is 

contained in the monad of oo and write 3ftCm(oo). 

By the results of Section 2, there exists an internal, regular inner region l) in 

*W with af~Cm(oo). For example, if W = { z ~ C : l z ] < l } ,  let 11= 

{z~* f : l z l<l -~}  where ~ ~ 0 ,  and 8 > 0 .  

THEOREM 3.1. Let fl be an internal inner region in * W with 01~ C m (oo). Let 

if/be an arbitrary compactification of W, and for each f E C(ff" - W) let f be a 
continuous extension of f to W (see [34, p. 148]). For each x E W, let 

hf(x ) = ~ [ 3 ~,  f~) (x)); 

i.e., hf is the standard part of the internal solution of the Dirichlet problem for *f on 

3fL Then the mapping f--* hf is a well defined, positive linear operator from 

C(IYr W) into ~(w with H_ (f, W) <= h I <= ISI(f, W) for each f E C( f f " -  W). 

PROOF. Given f and f, let f be another continuous extension of f to if'. For 

each y E 3f~, there is a unique z ~ 1&'- W with y E re(z), and so *f(y) = 

f (z )  = *f(y). Therefore s u p y ~ o . l f ( y ) - f ( y ) [  = ,~ = 0, and since 1E ~w, we 

have for each x E l~ 

f . ' , o  f . t  = S / z x -  d/z~ a </~ d g ~ < 8 = 0 .  
I1 ~1 f l  
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It follows that h t is well defined. By Axiom I and Proposition 2.1, h t is harmonic 

on W, and it is easy to see that the mapping [---~ h t is positive and linear. 

Let v be a superharmonic function on W with liminfwv(z)_-> f ( z )  for each 

z E f f ' - W .  Given e > 0 ,  each point z ~ l g ' - W  is contained in an open 

neighborhood Uz such that v + e - / > 0 on Uz n W. Since v + e - ] is lower 

semicontinuous on W, the set K = {x E W: v + e - / _ - < 0 }  is compact,  and 

therefore K C f l .  Thus * v + e  > * /  on 0fl ,  and so at each x E  W, v(x)+e>= 

ht(x ). It follows, since e is arbitrary, that for each f E C ( f f " -  W),  fI([, W)>-_ ht, 

whence H_ (f, W)  <- h t on W. I 

If i f '  is a resolutive compactification of W, then ht = ISI(f, W)  = H_(f, W); i.e., 

h t is the unique solution of the Dirichlet problem for each f E C ( f f " -  W). The 

Wiener compactification discussed in Section 5 is the largest resolutive compac- 

tification of W. 

Given Theorem 3.1, we see that the monad of a regular point is "unbroken"  in 

the sense made precise by the following result. 

THEOREM 3.2. Given a resolutive compactification if" of W let z be a regular 

point on if" - W. I f  U C lye is an open neighborhood of z and l'l is an internal inner 

region in * W  with 01")Cm(~), then *U A O I I # ~ .  It follows that if z has a 

countable base for its neighborhood system or if our enlargement is l~-saturated 

(see [28]) where the cardinal number I~ is greater than the cardinality of the 

neighborhood system of z, then the monad of z contains a point of c91) for each 

internal inner region 1% C * W with Of~ C m (oo). In any case, if {~,} is a countable 

exhaustion of W by standard inner regions and U is a neighborhood of z, there is 

an noE N such that for all n >= no, Ol), n U # O .  

PROOF. Given U, we may choose f to be a continuous function on if- so that 

f ( z )  = 1 and f ( x )  = 0 for all x ~  U. Since z is regular, limwh1(z ) = 1. If there is 

an internal inner region f l  with 0 f l C m ( ~ )  and 0 f ~ n * u = o ,  then 

h r = ~  01"~, f l )  = ~  l'l) = 0 ,  

but this is impossible. It follows that for a standard exhaustion {fl.} of W by 

inner regions, if there is an n E *N such that *U n o f l .  = 0 ,  then there is a last 

one, and it is standard. The rest follows from the definition of saturation [28] and 

the assumption that our enlargement is at least denumerably comprehensive,  

i.e., ~h-saturated. I 

In Section 5 we establish a converse of Theorem 3.2 due to A. Cornea and the 

author for the Wiener compactification of W. 
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4. A construction of maximal representing measures for positive 

harmonic functions 

In this section, Xo is a fixed point in W, ~ , = { h E ~ w : h _ - > 0 }  and ~ o =  

{h E ~ , : h ( x 0 )  = 1}. It was shown in Section 2 that q%o as a subspace of 

~ -  ~ equipped with the u.c.c, topology is a metric space. Clearly ~ o  is a 
+ 

compact,  convex subset of ~ w -  ~ w .  The set ~o  of extreme elements of ~ o  is 

G8 in q%o. (See [32, prop. 1.3].) A function h E q%o is in ~o if and only if it is a 

minimal harmonic function; i.e., given g E ~ v ,  if g =< h then g = Ah for some 

A => 0. Moreover  ~ o  is a Choquet  simplex; i.e., there is a greatest harmonic 

minorant  of f ^ g for any pair f, g E ~ , .  (See chapter 9 of [32].) 

Let ~ denote the set of probability measures defined on the Borel subsets of 

q%o. Given a measure A E ~, there is a unique element h E ~ o  such that for each 

x E W ,  

h(x)= ~ T,(g)dX (g) 
I 

x 0 

where T, (g) = g (x) for each g E ~o.  (See [32].) We say that A represents h, and 

for any continuous linear functional F on ~ , -  ~ ,  we have f . ,oF(g)dA (g)= 
F(h). If h E ~ , ,  only 6h represents h, where 3h (q%o)= 1 and 6h ( ~ o - { h } ) =  0. 

(See proposition 1.4 of [32].) 

A real-valued function ~ is convex on qb~ if ~(af+(1-a)g)<= 
a~b(f)+ ( 1 - a ) O ( g )  for each pair [,g in ~ o  and each a E R with 0 =  < a _-< 1. 

Given A and v in ~, we write A < p if for each continuous convex function ~b on 

~ o  we have 

~*-o tP(g)dA(g)<=f*.o ~(g)dv(g). 

When A and v both represent the same h E q%o, we write )t - v. If )t < v then 

A - v since evaluation, Tx, at a point x and - T, are convex on ~o .  If A < v and 

v < A, then v = 3, since the family of differences of continuous convex functions 

is uniformly dense in C(q%o). 

PROPOSITION 4.1 (Choquet). For each h E ~o, there is a unique probability 

measure ph on ~,~ such that ph ( ~ o -  ~g~o) = 0 and ph represents h. If v E ~ also 
represents h then v < ph ; that is, ph is the unique maximal representing measure for 
h with respect to the ordering <. 

PROOF. See [32, chaps. 3, 4, and 9]. II 
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F u n d a m e n t a l  for  this  p a p e r  is a special  case of a coro l la ry  due  to  Beno  

Fuchss t e ine r  [14] of a resul t  of Car t ie r ,  Fel l  and  M e y e r  (see [1, p. 23]). W e  s ta te  

as P ropos i t i on  4.2 the  vers ion of the  la t te r  result  n e e d e d  here .  The  p roo f  given of 

P ropos i t ion  4.2 and the  first coro l la ry  that  fol lows were  c o m m u n i c a t e d  to the  

au tho r  by B. Fuchss te iner .  

DEFINITION. A n  affine d e c o m p o s i t i o n  in S of a vec to r  x in a subset  S of a 

vec to r  space  X is a sum x = E?=, ct~x~ with E;'=, a, = 1, x, E S, and  0 _-< a, < 1 for  

each i = 1 , 2 , - . - , n .  A mapp ing  M is ca l led  affine on S if for  each affine 

d e c o m p o s i t i o n  x =E?= ,a ,x ,  in S of an e l e m e n t  x E S we have M ( x ) =  

E?=, a,M(x,) .  

PROPOSITION 4.2 (Car t ie r ,  Fell ,  Meyer ) .  Given A and ~, in ~, suppose that for 

every affine decomposition ,~ = ~?_-, a,A, o [A in ~ there is an affine decomposition 

= E?=,a~,~ of u in ~ with ~,~ ~ A, for each i = 1 , . . . ,  n. Then A < v. 

PROOF. Let  F, ,  �9 �9 -, F ,  be an a rb i t r a ry  finite set of funct ions  of the  fo rm F + r 

where  F is a con t inuous  l inear  funct ional  on ~ ' ~ , -  ~ ,  and  r E R. Let  G be  the  

convex funct ion on qb~ o def ined  by set t ing G ( h ) = m a x , ~ , F ~ ( h )  for  each 

h E q b .  W e  need  only show that  f.~, G (h) dA (h) <= f . ~  G (h) du(h), since the  set 

of all such G ' s  is un i fo rmly  dense  in the  set of con t inuous  convex funct ions  on 

@~o. (See [1, pp. 1 - 3 ] . ) F o r  each i, l<=i<=n, let X~ = { h  E ~ o : G ( h ) = F ~ ( h ) } ,  

Y~ = X~ - Uj<,X~, and a, = A(Y,).  If a~ = 0, let A, = A; o therwise ,  let a~A, be the  

res t r ic t ion  of A to Y,. Each  A, r ep resen t s  some  h~ E qb,~. Since A = E~'=, a,A, there  

is for each i, 1 < i =< n, a ~,, ~ ~ such that  ~,, - A, and  E?=, a~,~ = ~. T h e r e f o r e  

Xo i = l  i = 1  I 

= a, F~ dA, = a, E (h, = a, Fi dr, 
I'= I XO i = 1  i = l  d~xo 

n 

i = 1  J tl~xtl x o  

I 

COROLLARY 4.3 (B. Fuchss t e ine r  [14]). If M is an affine mapping of ~ o  into 

such that for each h E ~o,  M(h  ) represents h, then for each h ~ ~o,  M(h  ) is the 

maximal representing measure for h. 

PROOF. Given  h e l l o ,  a s sume that  M ( h ) < A  for  some  A E ~ ;  we must  

show that  ;t = M(h) .  Let  )t = E?=,a,;t, be  any att ine de c ompos i t i on  of )t in ~ .  

Then  A, r ep resen t s  some  h, E ~ o  for each i, 1 < i -< n. F o r  each x E W, 
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h(x)= f~, T~dA= ~ot, f| T, dA,= ~,'~,a,h,(x). 
Xo i ~ l  Xo 

That  is, h =ET=,ot,h,, so M(h)=Y~L,ot, M(h,). Thus  A < M ( h ) ,  whence  A = 

M(h). I 

COROLLARY 4.4. If M'  is an affine mapping from the set ~ o  of bounded 
elements of ~o  into ~ such that M'(h ) represents h for each h E qb~o, then M'(h ) is 
the maximal representing measure for each h E ~o. 

PROOF. The  p roof  is the same  as the one  for  Corol la ry  4.3 except  we note  

that  if hl E ~ o  and 0 < a~ _-< 1 for  each i, 1 -< i -< n, then h = EIL, mh~ is b o u n d e d  

if and only if each hi is bounded ,  since ( l / m ) h  _-> hi for  1 _-< i =< n. I 

We  now choose  and fix an internal  inner  region gl C W* with a l )  C m (~), and 

let/.~, = ~ for each x E ft. If h E q%o and x E W, then h(x) = f *hdl.~,. We w e  
ja  f l  

shall u s e  this fact to construct  the maximal  represen t ing  measure  for  h ;  it is a 

s tandard  fo rm of h d/~o. 

Recall  that  a *finite set is an internal  set in one -one  co r r e spondence  with an 

initial s egment  of *N. Such a set has the formal  proper t ies  of a finite set. The re  

exists a *finite collection {A~: 1 _-< i _-< ~/} of disjoint,  internal  Borel  measurab le  

sets in a l )  with U L , A ,  = a l )  such that  for  each s tandard  f ~  C(W), supA,*f--  

infA,*f = 0 for  each i, 1_-< i_-< y. T o  show this, we imbed  C(W) in a *finite 

collection ~d of *C(W). Given  f E ~3 and ~ > 0 with 8 = 0, let Pr be  the inverse 

image  under  f of  a *finite part i t ion of the range  of f l Ol) into intervals of length 

smal ler  than & The  c o m m o n  ref inement  of {Pr: f E ~} is the desired part i t ion of 
agl. 

We  now let )~ = {A, C a l l :  1 _-< i - to} be a fixed *finite collection of disjoint,  

internal  Bore l  measurab le  subsets  of al~ such that  /~o(A~)>0  and 

supA, * [ - i n f A , * f  = 0 for  each f E C(W) and each i, l _ - < i _  <- to, and such that  

/ ~ o ( a l ) -  UT=1A~) = 0. For  each A~ E .k',/~, (A,)  as a function of x is the solution 

of the internal  Dirichlet  p rob l em with respect  to the character is t ic  function of A, 

on O~;  let g~ be defined by sett ing g~(x) = I~x(A,)/l~o(A,) for  each x E 1). Let  

X = {g~: 1 -< i -< to}, let S be  the mapp ing  f rom X into ~ o  such that  S(g~) = ~ 

for  each i, 1 = i _-< to, and let Y C q%o be the image  S [X].  Let  M be the a lgebra  (in 

the usual sense) of internal  sets in X, let Mx be the smallest  (external)  ~ -a lgeb ra  

of subsets  of X such that  Mx D M, and let M~. be  the o ' -a lgebra  in Y consisting 

of sets B such that  S-'[B] E d, tx. 
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PROPOSITION 4.5. The set Y C ~o is compact in the u.c.c, topology and each 
Borel set in Y is an element of ~..* 

PROOF. Let {h,} be a sequence in Y, and let {K,} be an exhaust ion of  W by 

compact  sets. By taking a subsequence  of {h.}, we may assume without  loss of  

generali ty that there is an h E q b  such that for each n ~ N ,  supK. I h - h . I  < 

1/(2n). We must show that h E Y. Choose  for  each n E N a function f.  ~ X such 

that ~ = h.. Let  {f.: n E *N} be a internal extension of the sequence {f,: n E 

N}. An  internal p roper ty  that holds for each n E N holds for some y E *N - N. 

Thus  there is a y E *N - N such that jf~ E X and supK, ] *h - f ,  I < 1/% There-  

fore, h = ~ E Y. (Alternatively,  Y = S[X] is compact  by Rob inson ' s  theorem 

4.3.12 in [33].) 

We must next show that a basic open  set in Y is d/ty-measurable;  it then 

follows that the Borel  sets in Y are ~ y - m e a s u r a b l e .  (See [21, p. 49].) Given 

e > 0 ,  K compact  in W, and h E Y, we will show that 

B --- {g E Y: max I g (x) - h (x) I < e } E ,//t~,. 
x E K  

Choose  f E X so that h = of. The  set 

E"= { ~' EX:maxl~(x)-f(x)[<e-1}x~.r 

is internal for each n E N, so 

U E. = 
h E N  x E * K  

and S-'[B] = U .~NE.. I 
We now choose  and fix y~ E A~ for each A, E ,~. Note  that for each x E W 

h(x) = fao *h(y)dtxx(y)= ,=1 ~ *h (y,) #x(A,)  

�9 =_~*h(y,)tx~(a,I I'z'(A') 
,=, , ttxo(A,)" 

That  is, h is essentially an affine combinat ion  of the functions 

g , = h t x ( A ' )  in X.  
p.~o(A,) 

�9 (Added in proof, April 1976.) A recent result due to Ward Henson shows that B C Y is analytic 
iff B = S[A] for some A ~ .  Therefore, .a~. is the family of Borel subsets of Y. 
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THEOREM 4.6. Given h E ~ o ,  let Vh be the finitely additive real-valued 

measure on the algebra ~r of internal subsets of X such that for each set E E ~l, 

v, (E)  = *h (y,) p~o(A,). 
i : g l E E  

Then vh has a unique countably additive extension, which we also denote by Vh, to 

~• For each B E ~t~., let Ph ( B ) = v, (S-~[B]). Then Ph is the maximal representing 

measure for h on d~o. 

PROOF. That v, is uniquely determined and countably additive on ~ x  

follows from theorem 1 of [25]. Given x E fl  and letting T. denote evaluation at 

x, we have 

f~. = , r ~ p'" (A,) * h ( x ) =  *hdl~x ,=l~*h(Y')~'~' "/.t~o(A,) 

= ,=1 ~ T,(g,)*h(y,)tX~o(A,)= fx  ~ 

by corollary 1 of [25]. Of course, ~ (g)) = ~ = S ( g ) ( x )  if x ~ W. Since only 

real numbers are involved, we have for each x E W, 

h ( x ) =  fx ~ fY T,( f )d~h( f ) .  

Thus r represents h for each h E ~o- Since the mapping h --~ ~h is affine, ~h is 

the maximal representing measure for h for each h E q%o by Corollary 4.3. II 

COROLLARY 4.7. I f  h E ~ o  is minimal, then h E Y. 

PROOF. Only unit mass 8h at h represents h. II 

As is usual in nonstandard analysis, results such as Theorem 4.6 yield standard 

limit theorems of the type we now consider. Recall that a statement that can be 

interpreted in both a standard structure S and a nonstandard extension of S is 

either true for both or false for both. 

THEOREM 4.8. Fix h E ~o, a compact Ko C W, and an e > 0  in R. " There is a 

compact set K D Ko such that on the boundary of each inner region f l  3 K there is 

• A  a Borel measurable set A a  with txxo( ~) > 0 and 

[ h (x)  - / xx  ( A . )  < e ." sup  
,~Ko I p,~o(A . )  
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PROOF. By Theorem 4.6, the statement in quotes is true for some nonstan- 

dard compact set K in * W with K ~ *Ks for every standard compact set K, in 

W. Therefore  there is a standard compact K for which the statement in quotes is 
true. II 

THEOREM 4.9. Let hi, h2, �9 �9 ", h~ be a finite subset of d~o. Fix a.compact set 
Ko C W, a Borel set B C ~, ,  and an e > 0 in R. "There is a compact set K D Ko 
such that for each inner region ~ D K there is a set A COl) with 

sup fa T x ( f ) d P ' ( f ) - f A  h j ( y ) d l ~ ( Y ) l  < e  
xEKo 

for 1 <-j <= n." Here ph, is the maximal representing measure for h i on ~o. 

PROOF. Given l~ as in Theorem 4.6, we use the notations established in 

Theorem 4.6. Let /~ = S-~[B]. By theorem 1 of [25], there is an internal 

union A of elements of .~ such that if , ~ = { g , ~ X : A ,  CA} ,  then 

~'h, ((/3 - A ) U (A - / ~ ) )  = 0 for 1 =< j -< n. For each x ~ Ko and each j, 1 =< j =< n, 

we have by corollary 1 of [25], 

fB Tx(f)dph'( f)= fr~ ~ 

= f ~ ~,. Tx(g,)*h,(y,)l~o(A,) 
Ja g i l A  

tzx(A') *h " " "A fA = A~A/z~o(A,) jtY,)~-~ot ,)---- *hj(y)d~.~(y). 

By Harnack's inequality, it follows that for 1 =< j =< n, 

::p, lf.. *hi(y)dp.x(Y) I < e .  

Since the part of the statement of the theorem in quotes is thus true for some 

nonstandard compact K C* W, it is true for some standard compact K C W.II 

5. Compactilications for which bounded harmonic functions have 

continuous extensions 

In this section we describe a resolutive compactification if '  of W for which the 

Radon-Nikodym derivatives of harmonic measures are continuous and every 

bounded harmonic function and every positive harmonic function has a continu- 

ous extension to i f ' -  W. The smallest compactification with these properties is 
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one between the Feller and Wiener compactifications. Here, the ordering is the 

usual one for compactifications, i.e., i f  _-> i f  if there is a continuous map from 

i f  onto i f  which is the identity on W. Since we shall give a converse of Theorem 

3.2 for the Wiener compactification, and since the analysis is essentially the same 

for all compactifications between the Feller and Wiener compactifications, all of 

these compactifications will be considered at the outset. For the original work on 

this topic in the axiomatic setting see Constantinescu and Cornea [9], Loeb and 

Walsh [27], and Magea [30]; also see [7]. We follow the development in [27]. 

Given a collection O of continuous, bounded, real-valued functions on W, 

Constantinescu and Cornea [7] have shown that there is a unique (up to 

homeomorphism) compactification i f o  of W such that every function in O has 

a continuous extension to i f o  and these extensions separate the points of 

i f o  _ W. One may, following [7], adjoint Co(W), the continuous functions with 

compact support in W, to O and let i f o  be the closure of the canonical image of 

W in the product space 

A method which "works" for arbitrary Hausdortt  spaces is given in [23] and [24]. 

Using nonstandard analysis, one can obtain i f o  by letting m (~) denote the 

monad of the one point compactification of W (as before) and calling two points 

x, y E m(~)  equivalent when *f(x)  = *jr(y) for all [ E O. The points of i f o  _ W 

are the equivalence classes [x] and a neighborhood base for [x] consists of sets O 

determined by a finite set {/1," �9 ", f, } C O, a compact K C W, and an e > 0 in R 

with 

O = { y E  W-K:I~(y)-~ <e, l<=i<=n} 

U { [ z ] E  i f . o _  W:Ol.~(z)_,f~(x)l <e, l<=i<=n}. 

The justification for this method of obtaining i f o  is the same as that given by 

Gonshore for the Stone-(~ech compactification [15]. 

Recall that a potential on W is a superharmonic function on W with greatest 

harmonic minorant equal to 0. We assume throughout the rest of this paper that 

there is a positive potential and a bounded harmonic function not identically 

equal to 0, defined on W. This means that 1 is not a potential, and ~ is 

hyperbolic on W in the sense of [22]. (See prop. 5.5 and theor. 5.8 of [22].) If 

there were no potential on W, then the space of bounded functions in ~w would 

consist only of multiples of 1. 

Let Pw denote the set of potentials on W, and let B~w  denote the bounded 
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harmonic  functions on W. BY[w is a Banach lattice with respect  to the sup norm 

and the lattice opera t ions  V ~ and A ~ where  fA  ~g is the greatest  harmonic  

minorant  H ( f  ^ g) of f ^ g and fV ~g  = - H (  - f ^ - g). The  funct ion H(1)  is an 

order  unit for BYgw. Here  H ( v )  denotes  the greatest  harmonic  minorant  of any 

lower-bound superharmonic  function v. Given two such functions va and v2, and 

given a and /3 E R +, we have H(av~ +/3v2) = all(v1)+/3H(v2).  (See [27, p. 

2841 .) 

DEFINITION. Given if-o, the harmonic  part  of ff, o _ W is 

REMARK. 

Fo = n { z  E lye ~  W : l i m i n f p ( z ) = O } .  
pEPw W 

A n y  compactif icat ion of W is ff, o where  O = { f l W :  f E C(I~')}. 

PROPOSITION 5.1. I f  V is a lower-bounded superharmonic function on W with 

l iminfwv(Z)>-O at each z E F o  for some family Q, then v >=0 in W. 

PROOF. Given e > 0, the set 

A ,  = {z E if, o _  W : l i m i n f v ( z ) < =  _ e} 
w 

is compact  in (if ,  o _  W ) - F o .  There  is a finite sum of potentials p = 

pl + �9 �9 �9 + pm which is also a potential  such that lim infwp (z)  => 8 for  some 8 > 0 

and every z E A,. Thus  for some a > 0, lim infw(v + ap  + e )  (z)  >= 0 for every 

z E ff, o _ W, whence  o + ap + e >= 0 on W since v + ap + e takes a min imum 

value on ff, o and a noncons tan t  function in ~ w  cannot  t/tke a nonposi t ive 

min imum in W. Therefore ,  

v + ap + e > H ( v  + ap + e ) =  H ( v ) +  H(e)>-O,  

so v + e > = H ( v ) + H ( e ) > = O ,  i.e., v > = - e  for every e > 0 .  Thus  v=>0 

on W. 1 

Let DPw be the set of bounde d  cont inuous  functions f on W for  which there 

exists a potential  pr with Ill --< p, on w. We now consider  compactif icat ions I~ ' ~  

where Bg(w C Q c B~gw O DPw; ff, a~w is the Feller compactif icat ion of W, and 

ff-(B~wuop,o is the Wiener  compactif ication of W. Let CPw denote  the set of 

bounded  cont inuous  potentials on W. In Section 6, we shall work with 
r ( B ~ w U C P w ) "  

PROPOSITION 5.2. I f  B3~w C Q C BY(w U DPw, then the restriction mapping 

p: h---> h lFo is an isometric isomorphism from the Banach lattice BY(w onto 

C (F o ). The mapping p preserves the lattice operations on B ~ w  and p (H(1)) = 1. 
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PROOF (from [27]). That P is an isometry into C(Fo)  follows from Proposi- 

tion 5.1 and the fact that for any set A and any real-valued function f, 

supx~,,,[f(x)p<-_a if and only if a + f = > 0  and a t - f - 0  on A. Identifying 

functions with their extensions, it is clear that B ~ w  separates the points of Fo. 

Since 1 - H ( I )  is a potential, 1 = H(1) on Fo. Similarly f A g = fA ~g on Fo for 

each pair f, g E B~w. Since p [ B ~ w ]  is closed, p is surjective by the lattice form 

of the Stone-Weierstrass Theorem. II 

Note that for all cases of Proposition 5.2, the sets Fo are equivalent up to 

homeomorphisms.  (See [27, p. 294].) The next result is usually stated for the 

Wiener compactification. 

PROPOSITION 5.3. I f  B ~ w  U CPw C O c Bggw U DPw, then every positive har- 

monic function has a continuous extension to i fo .  

PROOF. Fix h _-> 0 in ~w. For each n E N, n A h is the sum of a potential and 

harmonic function and has a continuous extension to i f o .  The upper  envelope/~ 

of the family {n A h : n E N} is lower semicontinuous on i fo ,  and so/~ can only 

be discontinuous at a point z E i f o  _ W with/~(z)  = a < +oo. But in this case, 

for n > a we have n A h < n in some neighborhood U of z, whence n A h =/~ in 

U. Thus /~ is a continuous extension of h on i fo .  II 

Finally we recall the following fact about quotients of the Wiener compactifi- 

cation. 

PROPOSITION 5.4. I f  i f  = W ~ for B ~ w  C Q C BY(w U D P  and I7r is a com- 

pactification of W with i f  >- i f ,  then i f  - W is a resolutive boundary for W. Let IZx 

and t2x denote harmonic measure with respect to x on i f -  W and i f -  W 

respectively, and let ~o be the continuous map from i f  onto I~" such that ~o (x ) = x 

for each x E W. Then for each x E W and f E C ( i f  - W)  we have 

f,~,_wfd~'= fa, wf~ 
PROOF. Let F and F be the harmonic parts of I ~ ' -  W and i f -  W respec- 

tively. (Then q~[F] = f', see [30, theor. 3.1.1].) Let f be continuous on l b ' -  W 

and let h be the harmonic extension of f o ~0 on F. Fix e > 0 in R. For each point 

z E i f  - W and each neighborhood U of ~0-1[z] there is a neighborhood U '  of z 

such that q~-l[U'] C U ([30, p. 57]). Since points of F are regular, there is a 

potential p such that 

l iminf (p + h +�89 fo  ~ (y )  
w 

for each y E i f -  W, and so 
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lim inf (p + h + e ) ( z )  >= f ( z  ) 

for each z E W -  W. It follows that for l,(z, 

/~(f, w )  _-</-/(p + h + e)  =/ - / (p)  + H(h )  +/- / (e  ) = h + / / ( e  ) 

<-_h+e. 

Since e and f are arbi t rary, / - I ( f ,  w )  _-< h and /-~( - f,  W )  <_- - h,  i . e . ,  

H(f ,  W ) =  - / ' t  ( -  f, W ) =  > h. 

Thus, for each x E W, 

( ro d, x = h x)= H_r W)r a r  W)Cx)= I rdC ,. I 
J• - W  ~ ~V - W  " 

COROLLARY 5.5. Given ffz and IYr as above, F is the support of 12x for each 

x E W, and if z E ~ V -  W is regular, then z E r. 

PROOF. Since F is compact  in i f ' -  W and is the support of /zx for each 

x E W, only points of F are regular for if '  - W. Since ,p [F] = F, the corollary 

now follows from the theorem. I 

If B ~ w  C Q C B ~ w  U DPw, then a point of ff, o _ W is regular if and only if it 

is in r o  If z E Fo then by Theorem 3.2 the extension of every standard 

neighborhood of z intersects the boundary of every internal inner region 

containing all standard compact  sets. We now give a new result due to A. Cornea 

and the author showing that this property characterizes the points of Fo if ff, o is 

the Wiener compactification of W. 

THEOREM 5.6 (A. Cornea, P. A. Loeb). Let Vr be the Wiener compatifica- 

tion of W and fix z @ W - W. Then z is a point of F, the harmonic part of if" - W, 

if and only if for each open neighborhood U of z and each countable exhaustion 

{f~, } of W by inner regions, there is an no E N so that for all n >= no, O f~, O U ~  O. 

Thus if z ~ F there is an open neighborhood U of z and an internal inner region f~ 

with at~Cm(oo) such that * U N  0 1 ~ = O .  

PROOF. Assume z ~  F and let U be an open neighborhood of z with 

0 n F -- O. Let UI be an open neighborhood of z with U1C 01C U. There is a 

potential  pl on W with lim inf pl --> 2 at each point x E 01 - W. The set 

K = { x E  W : p l = l } n  01 

is compact  in W, and so there is a potential p2 on W with p2 --> I on K. Therefore,  

any function on W with values between 0 and 1 which vanishes on W -  U1 is 
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dominated by the potential p, + p2 and hence has a continuous extension to if'. 

Let {1).} be any countable exhaustion of W by inner regions, and let U2 be an 

open neighborhood of z with U2CO2CU;  such that U 2 A O f L g O  for all 

n ->n0  for some n 0 E N .  (If no such U2 exists, we are done.) Let f = 0  on 

Ol-l,o§ n 02 for all even j, and let f = 1 on al~.o+j n 02 for all odd j. Extend f 

continuously to W so that 0 =< f =< 1 and f l W - U1 = 0. It now follows that f has 

a continuous extension to all of if" and in particular to the point z. Therefore,  

there is a neighborhood U3C U: of z such that U3A al~,o+j = ~ either for 

all even j or for all odd j. In any case, there is a j E * N - N  such that 

*U3N OfLo+, = O. The rest follows from Theorem 3.2. II 

6. An almost everywhere regular boundary supporting the maximal 
representing measures for bounded harmonic functions 

In this section we establish the existence of an ideal boundary A for W such 

that the points of A correspond to non-negative harmonic functions, A supports 

the maximal representing measures for positive bounded and quasibounded 

harmonic functions, and almost all points of A are regular for the Dirichlet 

problem. The results of this section were first developed as an extension of 

Section 4 using nonstandard analysis throughout.  Many of the constructions and 

arguments  have been made "s tandard"  as the section has been refined, but the 

original intuition should be acknowledged. 

Recall that we are assuming the existence on W of a positive potential  and a 

bounded harmonic function not identically equal to 0. Let Q be the set of 

bounded harmonic functions B ~ w  together with the continuous bounded 

potentials on W. We shall work with the compactification ff, o which we denote 

by if ' ;  we let F = Fo. The reader can, if he or she chooses, assume that if" is the 

Wiener compactification; our choice of if '  is the smallest compactification 

yielding the desired results. 

Fix a point x0@ W. For each x E W, let p,x denote harmonic measure on 

i f ' -  W; the support of tzx is F. Given x E W, the Radon-Nikodym derivative 

dtzx/dl~,o is bounded and bounded away from 0 on r ;  the bounds can easily be 

obtained as the constants for Harnack ' s  inequality associated with W and the 

compact  set {Xo, x}. Moreover,  if h is the upper  envelope of any family {h,~} 

directed by increasing order in B~(w, and if h is bounded, then h E ~ by Axiom 

III,  and 

h (x~ = sup h~ (x~ = suP h~ d~~ <- fr h d~,,o = h (xo). 
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It follows (see remark 2 on page 293 of [27]) that dlzx/dg~ o is equal to a 
continuous function on F,/Z~o-almost everywhere. We may therefore assume that 

dgx/dtz~ is the trace on F of a bounded harmonic function of y, r(x, y). That is, 

we set 

fr d~x d~z. dtxxo r(x, y) = d/x~o d/x~o 

for each pair x, y E W. Given x, y E W, we may assume that r(x,. ) and r ( . ,  y) 

are continuous on if ';  clearly r(x, y ) =  r(y, x). 

Let t) = {r(x,. ) ~ B~w:  x E W}, and let lg' = ff, o. Let q~ be the continuous 

mapping of if" onto W such that for x E W, ~ ( x ) =  x, and for z~,z2E i f ' -  W, 
q~(z~) = q~(z2) if and only if r(x, z~) = r(x, z:) for each x E W. The compactifica- 

tion W is the type of compactification considered by Thomas E. Armstrong in 

chapter 11 of [2]. The results in [2] have little relation, however, to those we shall 

now obtain, except that Proposition 6.1 can be obtained as a corollary of results 

in [2]. (In an unpublished manuscript, Stuart P. Lloyd has considered similar 

quotients of just the harmonic part of the Feller boundary from a probabilistic 

viewpoint.) Note that the compactification lye does not depend on the choice of 

x0 since dtzx/d~x, = d~x/dtzxo I dlX~l/dl~xo for any point Xl E W. 
Given x E W, we let q(x, .  ) denote the continuous extension of r(x,.  ) to if' 

and q( .  ,x )  denote the continuous extension of r(.  ,x)  to if'. If x E W, z E I~', 

and z ' E  if" with q~(z')= z, then 

q(x , z )  = r ( x , z ' ) =  lim r (x ,y )=  lim r ( y , x ) = r ( z ' , x ) = q ( z , x ) .  
yE W,y~z '  y E  W, y ~ z '  

Let A = i f " -  W, and let F be the harmonic part of A. Given x E W, let /2~ 

denote harmonic measure on A with respect to x; by Corollary 5.5, the support 

of /2x is 1 ~. Let 

and let 

~ o = { h  EYgw:h > 0  and h(xo)=l} ,  

qbx o {hEYgw:h_---0 and h(xo)-<l} 

Both q%o and qb~ are compact in the u.c.c, topology by Theorem 2.1. We now 

show that the function q(x, y) on W x W has many of the properties of the 

Poisson kernel for the unit disc. 

PROPOSITION 6.1. Thefunct ionq(x,  y) on W x ~/has  thefollowingproperties: 
i) if x E W, q (x, .)  is continuous on I~', harmonic on W, and 0 < q (x, Xo) <- 1. 

Moreover, q(x,-  )IA represents the Radon-Nikodym derivative d~x/dl2~o; 
ii) if z E A, q ( . ,  z) is harmonic on W, and q(xo, z)_-< 1; 
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iii) the 
the u.c.c. 

I f z , , z 2 ~  
A onto a 

iv) if z 

of~P~o. I f  

PROOF. 

harmonic 

mapping T: x ~ q ( . ,  x) from ITV into @~ is continuous with respect to 
t topology on @~o. 

A and z, ~ z2, then T(z,)  ~ T(z2). Thus T [ A is a homeomorphism from 
subset of ~ ,  and so A is a metric space; 

f', q(Xo, z) = 1. Thus T I f" is a homeomorphism from f" onto a subset 
1 is harmonic, q(x, Xo)= 1 for all x E lfr 

To prove (i), fix x E W. By definition q(x. .  ) is continuous on I~' and 

on W. Moreover,  

q(x, xo) = r(x, xo) = -- l d_~  d/z~o = [ d/z, = H(1) (x ) ,  
d/z~o jr Jr 

and 0 < H ( 1 ) ( x ) =  < 1. By Proposition 5.4, if f ~  C(A) and x E W, then 

f~ f(y)q (x, y) d#~o(y) = fr (f~ , ( z ) )  r(x, z) d/z.(z) 

= fr fo~o(z)d/z , (z)= f~ f(y)dfi .x(y).  

It follows that q(x , . )  is a representative of d~, /d~o on A. 

To prove (ii) and (iii), let Tw be the restriction to W of T. Given a finite set 

x, y,, �9 �9 y, in W and e > 0 in R, there is a neighborhood U of x such that if 

x ' E  U and 1 _-< i ~ n, then [q(x', y~)- q(x, Y,)I < e. It follows that Tw is continu- 

ous with respect to the topology of pointwise convergence on @~0, which is the 

same as the u.c.c, topology on @" by Theorem 2.1. Since ~ "  is compact, we can 

imbed W in a unique (up to homeomorphism) compactification W such that Tw 
has a continuous extension to I~', Tw: ff'--~ @~o, and Tw separates the points of 

- W. To do this, we use the method of [23] or the analogue of the methods 

described in Section 5. For each z E W, let ~(z, .  ) = Tw(z). If z ~ W, ~(z, .  ) = 

q ( z , . ) =  r(z,.). Given z ~ W -  W, e > 0  in R and x E W, {x} is compact, so 

there is a neighborhood U of z in I~' with the property that for any z ' ~  U, 
[ ~ (z', x )  - ~ (z, x)l < e. Therefore,  ~ ( . ,  x) is a continuous extension to if" of 

r ( . ,  x) on W. Moreover,  the functions {~(. ,  x): x E W} separate the points of 

I~ ' -  IV. By the definition of I~', there is a homeomorphism ~ from W onto I~' 

with ~(x)  = x for each x E W, and for each z E if', q(z, .  ) = ~0k(z) ,"  ). Clearly 

(ii) and (iii) now follow. 

To prove (iv) note that for each x E W, 

q(x, xo) = r(x, Xo) = fr d/zx = H(1) (x ) .  

Since H ( I )  is equal to 1 on F, r(z, Xo) equals 1 for each z E F. If y E f', there is a 

z E F with ~ (z )  = y (see [30, theorem 3.1.1]), so 
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q(xo, y) = q(y, Xo) = r(z, Xo) = 1. 

If 1 E ~w, H(1) = 1, so q ( . , X o ) =  1. I 

We next establish an important  difference between A and the boundary of 

R. S. Martin [29]. M. G. Shur has shown in [35] that there can exist a minimal 

irregular point z on the Martin boundary such that {z} has positive harmonic 

measure.  It will follow from the next result and Theorem 6.4 that this cannot be 

the case for A. 

DEFINITION. A point z E A is called minimal if q ( z , - )  is minimal. 

THEOREM 6.2. A minimal point z E A is regular if q(z, Xo) = 1. 

PROOF. We give a nonstandard and a standard proof. For each x E W, 

/2x (I')--< 1, so {/2, : x E W} is compact  in the *weak topology for Borel measures 

on F. Let 8z denote  the probabili ty measure on A such that 8z (A - {z}) = 0. Then 

z is a regular point if and only if lim,~w .... /2x -- 8z in the *weak topology. This is 

the case if for each nonstandard y E m (z), Sz is the standard part ~ of/2y with 

respect to the *weak topology. But for each standard w E W we have 

f *q(s,w)d/2y(s) *q(y,w) q(z,w). 
f .  

Therefore,  

frq(s,w)d~ q(z,w) 

for each w E W ,  and letting w = x o  we have frd~ Since ~ is a 

probabili ty measure on qb~o and ~ represents the extreme element q (z , - )  in ~o ,  

~ = ~.  (See [32, p. 8].) 

A standard version of this proof  is obtained by taking an arbitrary net x~ 

converging to z in W and letting v be a *weak cluster point of the net/2xo. We 

must show that v = ~z. There  is a subnet {x~} of {x~} such that for each w E W, 

f q(s'w)dv(s)=limfrq(s'w)arm~(s) 

= lim q(x#, w ) =  q(z, w), 
/3 

and frdv = q(z, Xo) = 1. Since e is a probability measure on ~ o  and t, represents 

q(z..), v=8,. I 

EXAMPLE. We show the assumption in Theorem 6.2 that q(z, Xo)= 1 cannot 

be omitted. Consider the space W = {x E R : 0 < x < + ~} with W, consisting of 
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all linear combinations of the functions e x and 1 + e -~ on fl for each open 

interval f l  C W. Here,  2 - (1 + e-~) = 1 - e-" is a potential on W, and {0} is the 

harmonic part of if'. Let Xo = 1. Then ~ ({0}) = �89 (1 + e-~) for each x C W and so 

~o({0}) = �89 + e-~). Given x, y ~ W, 

fr  d/xx d/z, (I + e - ~  [I + e-Y~ 
r ( x , y ) =  d~,~ d~,~d~~ "(l + e-')~a--Y~e-'/ \l--g-~e-~] ' 

and r(0, x) = (1 + e-~)/(1 + e -1) while 

, l + e  -~  
r( +oo, x)=~-il-fi e_ , -  �89 

Therefore,  A = {0, + ~} and q ( +  oo,. ) is minimal, but + ~ is not a regular point 

of A. 

Recall that an unbounded, positive harmonic function h on W is called 

quasibounded if it is the limit of an increasing sequence {h.} of bounded 

harmonic functions. Let h and h, also denote the continuous extensions of these 

functions to W. Given w ~ W, we have 

h ( w ) =  lim hn(w)=  l i m [  h,dp, w <= [ hdl.t, 
rt~ n ~  J U J r  

= ,imfF (h 

Therefore,  for each w E W, 

DEFINITION. 

A m)dlz~ = limH(h ^ m)(w)<- h(w). 
rn ~ 

h ( w ) =  fr  hdl'tw = fr h ( y ) r ( y ,  w) dp.~o(y). 

For each h E ~ . ,  let vh he the measure on F defined by setting 

n,~-3lA] 

for each Borel set A CF. 

THEOREM 6.3. I f  h E cb~ o is bounded or quasibounded, then u, considered now 

as a probability measure on the set,{q(z, . ): z E F} C dP~ o is the maximal  represent- 

ing measure for h. 

PROOF. For each w E W, 

h ( w ) =  fr r(y, w ) h ( y ) d l ~ o ( y )  = f q(z, w ) d u h ( z ) .  



Vol. 25, 1976 IDEAL B O U N D A R I E S  IN POTENTIAL T H E O R Y  179 

Tha t  is, vh represen ts  h on d/,~o. The  mapp ing  h ~ v, is afline, so, by Corol la ry  

4.4, v, is maximal  if h is bounded .  If h is quas ibounded  and A is a Bore l  subset  

of F, then 

vh(A ) = lim ( (h ^ m )dtz~ = lim VH~h^.,)(A ). 
m ~  .t F n ~  - I [ A  ] m ~  

For  each m E N, vn(,^,.) is suppor ted  by ex t r eme  points  g'~ of qb~o, so ~'h is 

suppor ted  by gexo. T h e r e f o r e  uh is maximal .  II 

THEOREM 6.4. A l m o s t  all points o f  A with respect to harmonic  measure are 

min imal  points in [" and are there[ore regular. 

PROOF. If A is a Bore l  set in [', then it follows f rom Proposi t ion  5.4 that  

/~o(A ) =/x~o(r ' [A  ]). T h e r e f o r e  

v"(')(A)=frn_l[a , fFn _,,A , a ,o=fA d/2~o=/2~o(A) 

for  each Bore l  set A CF.  Tha t  is, v n ~  =/xxo. Let  c = H(1)  (x0). Then/Z~o = vH~) = 

cu~-,n~,~ is suppor ted  by the minimal  point  of 1 ~. Thus  ha rmonic  measu re  for  each 

x E W is suppor t ed  by the minimal  point  of [', and these are all regular  points  by 

T h e o r e m  6.2. II 

When  it exists, the Mart in  compact i f icat ions  of W may  be quite unlike the 

compact i f ica t ion 1~'. For  example ,  given Y( and a posi t ive h E Y(w, the class 

Y[/h = { f /h  : f  E Yg} is a ha rmonic  class (see [4], [5], or  [22]) with the same 

Mart in  bounda ry  for  W as ~ .  If h is minimal ,  however ,  the only b o u n d e d  

e lements  of Y{/h are mult iples  of 1. In this case, F is a single point  and I~' is the 

one point  compact i f icat ion of W. 

We  consider  now under  what  c i rcumstances  A is the suppor t  of the max imal  

represent ing  measu re  for  every h E qb~o, that  is, under  what  c i rcumstances  the 

family {q ( z , .  ): z E [ '}D ~'xo. We  also give a cri ter ion for  IYr W to be  a given 

bounda ry  for  W, e.g., the topological  boundary .  An applicat ion of this cri terion 

to the open  unit disc D = {z E C : l z [ <  1} shows that  / )  is the closed disc 

{z E C : [ z  1=< 1} which is the Mart in  compact i f icat ion of D. 

Note  that  if f~ is an internal  disc {z E *C: [  z I < M} conta ined  in the extension 

*D of the unit disc D, with M < 1 and M = 1, then for  each y E 01"l there  is an 

c~ E *[0, 2~-] such that  y = Me '~ and ~ = e ~~ The  value of the extension of the 

Poisson kernel  at each point  y E 012 and z = re ~~ E D is 

M 2 -  r 2 1 - r 2 
M 2 - 2Mr  cos (0 - or) + r 2 = 1 - 2r cos (0 - ~ ) + r 2" 
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Here,  the right side is the value of the standard Poisson kernel at ~ and z. These 

facts suggest the following general result. 

THEOREM 6.5. Let IYr be a resolutive compactification of W. Assume that for 

each x E W there is a continuous real- valued function p (., x)  on IdV - W such that 

for each z E  ( V -  W, p (z , . )Ed# ,o  and if zl and z2 are distinct in W - W ,  

p ( z l , ' ) ~  p(z2, ' ) .  Then the mapping z---~p(z,.) is a homeomorphism from 

i f " -  W onto a subset of ~,o. Also assume that there is an internal inner region 

f~ C * W with dl)  C m (oo) such that for each standard x E W there is an internal 

representative rr( . ,  x)  of the Radon-Nikodym derivative a , dfzx/dtz,o on M"I with 

%-(y, x) = p(S(y) ,  x) for each y E Ol), where S(y)  is the standard part of y in 

~V - W. For each h ~ dP~o, let trh be the internal measure on the collection sg of 

internal Borel subsets of O~ such that for each A E sg, 

= fA *h ~ Oh(A) dtt xo . 

Let ~ be the unique extension of trh to the smallest (external) it-algebra d~ in 01~ 

with d~ D ~.  (See [25].) Then the mapping S is measurable with respect to the Borel 

sets in l f r  W and the tr-algebra ~ ,  and if for h E cb,o and each Borel set 

B C f f ' -  W we set 

ph(B) = ~ (S - ' [B] ) ,  

then p, is the maximal representing measure for h on ~,o. Moreover, I;V and W are 

equivalent compactifications of W (i.e., ~V >-_ if" and I~" >= I~V) if for each x E W, 

p ( . ,  x)  is the restriction from I14 to Vv"- W of a continuous function which is 

harmonic on W. In this case, p ( . , x ) =  q ( . , x )  for each x E W, and the set 

{ q ( z , ' ) : z  ~ A } D  $'~o. 

PROOF. As in the proof of Proposition 6.1, the one-one mapping z ---> p (z , - )  

is continuous with respect to the topology of point-wise convergence which is the 

u.c.c, topology on ~o ,  so the mapping is a homeomorphism.  

Let K be a compact  subset of  I ~  - W and let {U,} be a decreasing sequence of 

open neighborhoods of K with f" l :_ lU,  = K such that for each 

z E ( W -  W ) -  K, there is an open neighborhood V of z and an n E N with 

V N U, = O. Since W - W is a metric space and there is a countable exhaustion 

of W by compact sets, such a sequence exists. For each n E N, *U. N OI~E ~ ,  

and so K '=-  ("1 .~(*  U. 7101q)E.4/t. If y ~ Ofl and S ( y ) E K ,  then y E *U, f'l 

Or) for each n E N, so y ~ K ' .  If y E 0f l  and S ( y ) ~  K, Then there is a n E N 

and an open neighborhood V of S(y)  such that V O  U. =QS. Since y E *V, 
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y Z * U,, and so y Z K'.  Therefore,  S-~[K] = K' E ~ for the arbitrary compact 

set K C 1:~- W, and so S is measurable. 

Given h E @~o and ph on I ~ -  W, it follows from theorem 3 of [25] that for 

each x E W, 

f vv_wP(Z,x)dph(z)= ~a ~176 

~ ,  ~'(y, x)*h(y)dtz"~o(y) = h(x). 

Since 1Oh thus represents h and the mapping h ~ ph is affine, ph is the maximal 

representing measure for h by Corollary 4.3. 

Assume now that for each x E W we can extend p ( . , x )  so that p ( - , x )  is 

continuous on lb" and harmonic on W. Since the functions {p( . ,  x): x E W} 

separate the points of i f ' -  W, W-< if'. Let ff be the continuous map from if' 

onto I~' with if(x) = x for each x E W. For each y E 0fl,  let ~ denote the 

standard part of y in if '  - W, and as before let S(y)  denote the standard part of 

y in I~: - W. Given y E a l l  and a standard open neighborhood U of ff(~ in "v~:, 

since ff-~[U] is a neighborhood of ~ y E *U, and so S ( y ) =  ff(~ It follows 

that for each x E W, p(ff(~ x ) =  ~ x). Let f be a continuous function on 

i f ' -  W. Without loss of generality, we may assume that f is the restriction to 

' ~ -  W of a bounded h E ~w. Fix x E W. For each y E 01-1, 

�9 p(y, x) = 7r(y, x) .  

Therefore,  by Theorem 3.1 

fr p(ff(z) ,  x)f(z)dlx~(z)= f~, *p(y, x)h(y)d~o(y)  

~r(y,x)*h(y)d/za~o(y) = h(x). 
3a  f~ 

It follows that p ( . ,  x)off  is a continuous representative of dlzx/dlz~ on i f ' -  W, 

and so 

p ( . , x ) o ~  = r ( . , x )  

on if'. Therefore,  W and W are equivalent compactifications of W since they 

are both the Q-compactification for Q = {r( . ,  x): x E W}. The rest is c lear .1  

COROLLARY 6.6. If W is the open disc {z E C: I z I < 1} and 2{ is the family of 
harmonic functions on W in the usual sense, then ~/ = {z E C: l z I <<- 1}. 
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For a more general result than Corollary 6.6, one can use Hunt and 

Wheeden's  paper [19] which shows that the Martin compactification coincides 

with the Euclidean compactification for any bounded Lipshitz domain 1) in a 

Euclidean space. Moreover,  every bounded harmonic function is the integral of 

an L~ function (with respect to harmonic measure) on 31), all points of 31) are 

regular, and given x0 E 1), for each x E 1), d~x/d~xo is continuous on 31). Since 

these Radon-Nikodym derivatives separate the points of ~ 1), it follows that the 

Euclidean closure 1) is the compactification 1) considered here. 

The use of the measurability of the standard part map in the proof of Theorem 

6.5 occurred much later than its use in the proofs of Proposition 4.5 and 

Theorem 4.6. In the meantime, this device has been used by Robert  M. 

Anderson in the article appearing in this volume for a construction of Wiener 

measure and a construction of Lebesgue measure on [0, 1]. 

A generalization is given of the radial limits considered in Fatou's Theorem by 

the notion of fine limits at points corresponding to minimal harmonic functions. 

The following definition of a fine limit is due to K. N. Gowrisankaran [16]; it was 

suggested by the classical concept of L. Naim [31]. 

DEFINITION. Let h be a positive minimal harmonic function and let E be a set 

in W. The function R [  is the lower envelope of all positive superharmonic 

functions v on W such that v _-> h on E. The set E is called thin with respect 

to h if R ~  h (in which case, 0 is the greatest non-negative harmonic 

function on W majorized by R [ ) .  The fine filter ~h at h is the filter formed by 

the family of sets whose complements are thin with respect to h. A function on 

W has a fine limit at h if the limit with respect to the filter ~h exists. (See Brelot 

[6] for more details.) 

We shall need the following application of a generalization of Fatou's theorem 

due to L. Naim and J. L. Doob in the classical case and K. Gowrisankaran [16] in 

the axiomatic framework employed here. (Gowrisankaran's assumption that W 

has a countable base for its topology is not needed for this result. Also see 

Armstrong [2, chap. 11].) Recall that /Lo is the representing measure for the 

greatest harmonic minorant of 1 on ~xo. 

THEOREM 6.7 (Fatou-Naim-Doob-Gowrisankaran) .  If f>-O is a 12~o- 
integrable function on A and 

h ( x ) =  f~ f (z)q(z ,  xldt2~o(z) 

for each x ~ W, then the fine limit of h exists and equals f (z)  for 12~o-almost all 
z ~ A .  
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It is well known that the functions h for which Theorem 6.7 is applicable are 

the bounded and quasibounded functions in ~ v .  Our construction of A yields a 

brief proof and an interesting consequence of this fact. The generalization of 

Theorem 6.8 to the differences of nonnegative harmonic functions is left to the 

reader. 

THEOREM 6.8. Let h be a nonnegative real-valued function on W. 

i) I f  there is a Borel measurable function f >- 0 on A such that 

h (x )  = fa q(y, x ) f ( y )  d/2~o(y) 

for each x E W, then h is a bounded or quasibounded harmonic function on W 

with h <= M if f <- M. 

ii) I f  h is a bounded or quasibounded harmonic function on W and vh is the 

maximal representing measure for h on A, then Vh is absolutely continuous with 

respect to 12~o and, of course, 

/ dvh )) 
dfixo(y). 

iii) Assume the hypothesis of (ii) hold and f = dvh/dl2~o on A. There is a Borel 

set B CF with p.xo(B) = 0 so that if zl, z : E F -  B and ~p(z~) = ~(z2), then 

h(z l )  = h(z2) = f o~(z , )  = f o~(z2).  

PROOF OF (i). Since for each x E W, 

(1) h(x )  = fa q(y, x)f(y)dl2~o(y)= fr r ( z ' x ) f~176  

h is harmonic on W, and since 

h(x)= F r ( z , x )  ( f o~  ^ m)  (z)dt-e~o(z), 

h is either bounded or quasibounded. If f-< M, then for each x E W, 

h(x)= q(y,x)f(y)dl2xo(y)<-_Mf~ q (y ,x )d tLo(y )  

q (y, x) dvH(,(y ) = MH(1) (x) _--< M. 

PROOF OF (ii). If h is a bounded or quasibounded harmonic function and A 

is a Borel set in A with /2~,(A)= 0, then by Theorem 6.3 
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since 

vh(A)= fr h(z)d/x~o(z)=O 
n ~ - l l A l  

frn~ '[AI dl't~~ = fA dl2~~ -~0. 

PROOF OF (iii). If  h is a bounded  harmonic  funct ion and f = dvh/dl2,o on A, 

then Equa t ion  (1) holds. Let  g be the cont inuous  function on F such that  

g = f o  ~ ix,o-almost eve rywhere  on F. Then  for  each x E W, 

fr r(z'x)g(z)dgx~ fr r(z,x)h(z)d/z,o(Z), 

so g = h I F. Let  B = {z E F: h (z )  g f o ~o (z)}. Then/Z,o(B)  = 0 and for  each pair  

z~ ,z2E F -  B with ~ ( z l ) =  ~o(z2), we have  

h(z,) = f(q~ (zl)) = f(~'(z2)) = h(z2). 

If h is quas ibounded ,  let h. be an increasing sequence  in B~w with limit h. 

For  each n E N let f. = dUh./dl2.o on A and let B.  be the null set in F descr ibed 

above  for  h. and f.. Then  h(z)>=sup.h.(z) for  each z E F ,  but  

h (xo) =lira fr h. dtz~o = fr (sup  h.) dlz.o <= fr hdlz~~ : h (x~ " 

There fo re ,  if 

B = { z E F : h ( z ) ~ s u p h . ( z ) } O  6 Bin, 
rl m = l  4 

then /x~,(B) = 0; for zl, z2E  F -  B with ~(z~) = q(z2) we have  

h(Zl)---~ lira h.(zz)= lim h.(z2)= h(z2) 

Part (iii) of Theorem 6.8 was suggested by a result of T. Ikcgami (Icmma 2 in 

[20]) obtained for the Martin boundary. Wc now givc a method of computing 

fine limits of bounded functions using an arbitrary internal inner region f~ with 

0~Cm(oo). 

DEVINmON. Givcn any g E ~,~ and an internal inner region f~ C* W with 

0 ~ C m (oo), let 



Vol. 25, 1976 IDEAL BOUNDARIES IN POTENTIAL THEORY 185 

C~(g '12)={ACW:fonu.A *gd ixn~  " 

THEOREM 6.9. For each g E#P~ o and internal inner region IIC W with 

Oil C M (~ ), ~J (g, l l  ) is a filter in W. If g is extreme in cb ~ o, C~ (g, 12) is a filter finer 

than the fine filter ,~g at g. If f is a bounded real-valued function on W and f has a 

limit a with respect to ~g(g, 12), e.g., if the fine limit o f f  exists at g and is a, then 

o f  * * N 
,~ = f g dix.o. 

)o f l  

PROOF. Given A, B E~(g , I ) ) ,  since foa*gdixa-g(xo)=l,,o- we have 

f~a_A*gdtxa, o~--O and foa_~*gdix.ao=O, whence  foanAnsg* dixxno -~ 1. It follows 

that ~(g,  12) is a filter. If g E g'~ and W - B  E ~g, then for each v E ~'w with 

v _-> g on B, we have *v => *g on *B tq OlI, and so for each x E W 

~ h(x)=- an.~ *gdixa'<--R~(x)" 

Therefore  the harmonic  function h = 0 ,  and so W - B E ~ ( g ,  12). Thus 

~ ( g , a )  D ~,.  

Let f be a bounde d  real-valued function on W, and assume that f has limit a 

with respect to ~3(g,12). Then  for any e > 0 in R, 

A,  = {x E W:  a - e < f ( x ) <  a + e } E  qJ(g, 12), 

and so 

a - e  ~ - - ( a - e )  an'A. g tx'~ *fdixao~-- a *fdt~ 

Yo Yo = fdix,o= (a + e) *gdix~o = a + e. 
~ f 3 * A .  glf~*Ae 

Since e is arbitrary in R§ ~ �9 , E l  a f gdix.o. II 
[1 

COROLLARY 6.10. If  f is a bounded function with fine limit a at an extreme 

element g E ~P,~, and if {12.} is an exhaustion of W by inner regions, then 

a = lira f f g  dix [ l  n 
xo �9 

COROLLARY 6.11. Fix an internal inner region ~ with a12Cm(oo) and an 

exhaustion {ft,} of W by standard inner regions. Given h E B:lgw, let 
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fh(z) *h(y )*q(z ,y )  a = d~ xo(y) 
fl 

each z E A. Then fh represents dvh/dl2,o, the mapping h ---~ fh is linear, and 

f h ( z ) = l i m  I h ( y ) q ( z , y ) d ~ 2 ( y )  
n ~  d ~Nn 

for 12,o-almost all z ~ A. 

PROOF. See Theorems 6.7 and 6.9. I 

In conclusion, we note that the existence of IYr and the theory developed here 

have been established for a hyperbolic harmonic space W satisfying Axioms 

I-IV. Additional axioms, e.g. proportionality of potentials with point support, 

are needed to obtain the Martin compactification of W. 

BIBLIOGRAPHY 

1. E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin, 1971. 
2. T. E. Armstrong, Poisson kernels and compactifications of Brelot harmonic spaces, Ph. D. 

dissertation, Princeton University, 1973. 
3. H. Bauer, Harmonishe Riiume und ihre Potential theorie, Springer-Verlag, Berlin, 1966. 
4. M. Brelot, Lectures on Potential Theory, Tata Institute, Bombay, 1961. 

M. Brelot, Axiomatique des fonctions harmoniques, University of Montreal Press, Montreal, 5. 

1966. 
6. 
7. 

Berlin, 

M. Brelot, On Topologies and Boundaries in Potential Theory, Springer-Verlag, Berlin, 1971. 
C. Constantinescu and A. Cornea, ldeale Riinder Riemannsher Fliichen, Springer-Verlag, 
1963. 

8. C. Constantinescu and A. Cornea, On the axiomatic of harmonic functions I, Ann. Inst. 
Fourier (Grenoble) (2) 3 (1963), 373-388. 

9. C. Constantinescu and A. Cornea, Compactilications of harmonic spaces, Nagoya Math. J. 25 
(1965), 1-57. 

10. C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer-Verlag, 
Berlin, 1972. 

11. A. Cornea, Sur la denombrabilitd ~ l'infini d'un espace harmonique de Brelot, C. R. Acad. 
Sci. Paris (1967), 190A-191A. 

12. R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience Publishers, New 
York, 1962. 

13. J. L. Doob, A non-probabilistic proof of the Relative Fatou Theorem, Ann. Inst. Fourier 
(Grenoble) 9 (1959), 293-300. 

14. B. Fuchssteiner, Sandwich theorems and lattice semigroups, J. Functional Analysis, (1) 16 
(1974), 1-14. 

15. H. Gonshor, Enlargements contain various kinds of completions, in Victoria Symposium on 
Nonstandard Analysis: Lecture Notes in Mathematics No. 369, Springer-Verlag, Berlin, 1974, 
144-152. 

16. K. Gowrisankaran, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, 
Ann. Inst. Fourier (Grenoble) 16 (1966), 455-467. 

17. L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969. 



Vol. 25, 1976 IDEAL BOUNDARIES IN POTENTIAL THEORY 187 

18. R.-M. Herv6, Recherches axiomatiques sur la th~orie des fonctions surharmoniques et du 
potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. 

19. R. Hunt and R. Wheeden, Positive harmonic functions on Lipshitz domains, Trans. Amer. 
Math. Soc. 147 (1970), 507-526. 

20. T. Ikegami, On the boundary behavior of harmonic maps, Osaka J. Math. 10 (1973), 641-653. 
21. J. L. Kelley, General Topology, Van Nostrand, Princeton, 1955. 
22. P. A. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. 

Fourier (Grenoble) (2) 16 (1966), 167-208. 
23. P. A. Loeb, A minimal compactification for extending continuous functions, Proc. Amer. 

Math. Soc. (2) 18 (1967), 282-283. 
24. P. A. Loeb, Compactifications of Hausdorff spaces, Proc. Amer. Math. Soc. (3) 22 (1969), 

627-634. 
25. P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications in 

probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122. 
26. P. A. Loeb and B. Walsh, The equivalence of Harnack'sprinciple and Harnack's inequality 

in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-608. 
27. P. A. Loeb and B. Walsh, A maximal regular boundary for solutions of elliptic differential 

equations, Ann. Inst. Fourier (Grenoble) (1) 18 (1968), 283-308. 
28. W. A. J. Luxemburg, A general theory of monads, in Applications of Model Theory to 

Algebra, Analysis and Probability (Internat. Sympos. Pasadena, Calif., 1967), Holt, Rinehart and 
Winston, New York, 1969, 18-86. 

29. R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 
137-172. 

30. C. Meghea, Compactification des espaces harmoniques, Springer-Verlag, Berlin, 1971. 
31. L. Naim, Sur le r6le de la fronti~re de R. S. Martin dans la th~orie du potential, Ann. Inst. 

Fourier (Grenoble) 7 (1957), 183-281. 
32. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand, Princeton, 1966. 
33. A. Robinson, Nonstandard Analysis, North-Holland, Amsterdam, 1966. 
34. H. L. Royden, Real Analysis, Macmillan, New York, 1968. 
35. M. G. Shur, A Martin compact with a non-negligible irregular boundary point, Theor. 

Probability Appl. (2) 17 (1972), 351-355. 
36. N. Wiener, Certain notions in potential theory, J. Math. Phys. 3 (1924), 24-51. 
37. N. Wiener, Note on a paper of O. Perron, J. Math. Phys. 4 (1925), 21-32. 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF ILLINOIS 

URBANA, ILLINOIS 61801 USA 


