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APPLICATIONS OF NONSTANDARD ANALYSIS
TO IDEAL BOUNDARIES IN
POTENTIAL THEORY

BY
PETER A. LOEB'

ABSTRACT

A solution is given of the generalized Dirichlet problem for an arbitrary
compactification of a Brelot harmonic space. A method of obtaining the
Martin-Choquet integral representation of positive harmonic functions is given,
and the existence is established of an ideal boundary A supporting the maximal
representing measures for positive bounded and quasibounded harmonic
functions with almost all points of A being regular for the Dirichlet problem.

1. Introduction

In this paper we shall use standard methods of potential theory and Abraham
Robinson’s nonstandard analysis [33] to extend potential theoretic properties of
the unit disc to more general domains. In particular, we shall establish the
existence of an ideal boundary A for a general domain that is similar to the
boundary of R. S. Martin [29] in terms of representing bounded and quasi-
bounded harmonic functions. The boundary A, however, has the property that
almost all points (with respect to harmonic measure) are regular for the Dirichlet
problem. M. G. Shur [35] has shown that the Martin boundary does not, in
general, have this property.

The results of this paper will be established in the setting of M. Brelot’s
axiomatic potential theory [4], [5]. In addition, we assume that 1 is superhar-
monic. Examples of this axiomatic setting are given by harmonic functions and
indeed by the C*-solutions u of an elliptic differential equation of the form

" This work was supported by a grant from the U. S. National Science Foundation. The results in
Sections 1-5 were presented at the 1974 Oberwolfach Conferences on Potential Theory and
Nonstandard Analysis; Sections 1-6 were discussed at the Abraham Robinson Memorial Confer-
ence, Yale, University, May 1975.
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3%u
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+Ebiﬂ+ cu=0
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on a region in Euclidean space where % auxx. is a positive definite quadratic
form, the coefficients of the equation satisfy a local Lipschitz condition, and
¢ =0. (See [18,chap. VII], and [12, p. 326].) Brelot’s axioms are also satisfied by
the solutions of Au = Pu on an open Riemann surface W, where P is a smooth
nonnegative density on W (see [22]). Any result established here is established
for each of these special cases with no further verification being necessary. The
reader who is interested in only one of the cases subsumed by Brelot’s theory can
of course read this paper with the assumption that the case of interest is the one
under discussion.

Recall that the Dirichlet problem has two parts. First, given a connected open
set U with U compact, associate with each continuous real-valued function f on
aU = U — U a harmonic function H(f) on U so that the mapping f — H(f) is
positive and linear, and so that if we have a superharmonic function v on U (see
Section 2) with liminf v = f on dU, then v =2 H(f) on U. If this can be done and g
is continuous on U and harmonic on U, then H(g | 8U) = g | U. Moreover, by
the Riesz representation theorem, there is on 3U a Borel measure, denoted by
wy or just u,, for each x € U such that

HO@= [ fdut

for each continuous f on dU. The measure u/ is called harmonic measure for x
with respect to U.

The second part of the Dirichlet problem is to determine which points y € aU
have the property that

lim H (f) (x) = f(y)

x—=y
for each continuous f on aU. Points with this property are called regular points
on dU, and if all points on dU are regular, then dU or just U is called regular. If
U is regular, the mapping f — H(f) is uniquely determined.

In general, integrability with respect to u. is independent of the choice of

x € U. If f=0 is integrable on aU, then its integral, as a function of x, is
harmonic and either identically zero or everywhere positive. (See [4] or [22].)
Thus the measures u, are mutually absolutely continuous; the corresponding
Radon-Nikodym derivatives will be central to the results that follow.
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As is well known, the open unit disc D ={z € C;|z|< 1} with boundary
dD ={z € C:|z|= 1} is regular for the Dirichlet problem. For any continuous f
on ¢D and any point a € D,

HO@=5-] 4 s@a ),

here dé refers to Lebesgue measure on 4D. Martin’s generalization of the
Poisson Kernel P(z,a)=(1—|a|*)/| z — a | is obtained as a limit of normalized
Green’s functions. We shall instead consider a function g(z, a) which is the limit
as b — z of functions which for the disc D and a, b € D have the form

q(b,a)=%fm=] P(z a) P(z,b) d8(z).

We briefly review some important aspects of potential theory for D that will
be generalized with the kernel q.

1) If x, is the origin and x € D, then du,, = (1/27)d0 and P(-, x) = du./dp,,.

2) If z € oD, then P(z,-) is a minimal harmonic function with P(z, x;) = 1.
This means that if & is harmonic on D and 0 = h(x) = P(z, x) for each x € D,
then h = AP(z,-) for some A = 1.

3) (Herglotz, 1911) For each positive harmonic function h on D, there is a
measure p, on dD such that for each x € D,

h(x)= LD P(z,x)dp.(z).

4) (Fatou, 1906) Each positive harmonic function A on D has finite radial
limits f(z) at almost all points z € 3D (with respect to Lebesgue measure). If h
is bounded or the limit of an increasing sequence of bounded harmonic
functions, i.e., quasibounded, then for any Borel set A CaD,

p(A) =5 [ fao = | fau= [ fdou.

This paper has six sections. In Section 2 we discuss Brelot’s potential theory
for a harmonic space W and give nonstandard interpretations of some of the
results in that theory. In Section 3 we use a nonstandard internal region Q C*W
with 4(} contained in the monad of the one point compactification of W to
obtain a solution of the first part of the Dirichlet problem for any compactifica-
tion of W. By standardizing a nonstandard measure space on 3{Q as in [25], we
obtain in Section 4 a new construction of the Martin-Choquet integral represen-
tation for positive harmonic functions on W. In Section 5 we review properties of
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the harmonic part I' of the Wiener compactification that are needed in Section 6.
We also establish a criterion for characterizing points of I' due to A. Cornea and
the author. In Section 6 we obtain a compactification of W with the property
that every point of A = W — W corresponds to a non-negative harmonic function
and almost all points (with respect to harmonic measure) on A correspond to
positive minimal harmonic functions and are regular. If & is a bounded or
quasibounded positive harmonic function on W, then the maximal representing
measure for h is supported by the points of A corresponding to minimal
harmonic functions. A generalization of Fatou’s theorem is valid for A.

We assume that the reader is familiar with nonstandard analysis (see [33]). We
shall be working with a denumerably comprehensive enlargement. This means
that if S is a standard set and A, is internal with A, € *S for each n € N, then
the external sequence {A,: n € N} is the restriction to N of an internal function
from *N into *S. Enlargements which are ultrapowers or N, saturated models
have this property. (See [28, pp. 27-35].)

The notation used here is the same as in [22] and [33] with a few exceptions.
The symbol u is used to denote harmonic measure and m(a) to denote the
monad of a. If a and b are in the extension *R of the real numbers R, then
a = b means that a — b € m(0). We write °a to denote the unique real number r
with @ = r if a is finite, i.e., |a| < n for some natural number n. Otherwise,
°a = +»if g is positive and infinite and °a = — «if a is negative and infinite. As
usual, *N, *R and *C denote nonstandard extensions of the natural numbers N,
the real numbers R and the complex numbers C respectively; R* denotes the
positive real numbers.

A constant function with value ¢ is denoted by ¢. If f is a function and A is
contained in its domain, then f| A denotes the restriction of f to A. Instead of
lim,cayrf(x), Hminf ca, .. f(x), and lim sup.ca - f(x), we simply write
lima f(xo), lim inf4 f(xo), and lim sup.f(x,) respectively. Recall for example, that

limsup f(xo) = inf ( sup f(x)),

UEN(xg) \xEUNA

where N (xo) is the family of neighborhoods of x,. If f and g are real-valued
functions with domain B, then fA g and fv g are defined for each x € B by
fag(x)=min(f(x),g(x)) and fvg(x)=max(f(x),g(x)). The family of all
continuous real-valued functions on a set B is denoted by C(X).

By a region, we mean a connected open set; an inner region in a set W is one
for which the closure in W is compact. If x is a point in a compact Hausdorft
space with topology &, then the monad of x, m(x) is given by m(x)=
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MN,cues*U; we write x =°y for each y € m(x). The topology of uniform
convergence on compact sets is called the u.c.c. topology. The symbol  denotes
the end of a proof.

2. Brelot’s potential theory

We shall here review and give some nonstandard interpretations of the
potential theory of Marcel Brelot. (See [5] or [6] or [22].) The domain in question
is a locally compact Hausdorff space W which is connected and locally
connected but not compact. Let ¥ be a family of real-valued continuous
functions called harmonic functions. We assume that each f € ¥ has an open
domain @ (f) in W and for each open set QCW, Ho={fEX. D(f)=Q} is a
real vector space. We further assume that ¥ satisfies the following three axioms
of Brelot derived in part from previous axiom systems of J. L. Doob and G. L.
Tautz (see the second part of [5]) and later generalized by H. Bauer [3] and
Constantinescu and Cornea [10].

AxioM L. A function g with an open domain QL C W is an element of ¥ if for
every point x € () there is an h € ¥ and an open set » such that x € w CQ) and
glo=h|w

Axiom II.  There is a base for the topology of W consisting of inner regions
which are regular for the Dirichlet problem. (See Section 1.)

Axiom III. If QC Wisaregionand & C ¥, is a family directed by increasing
order (i.e., Vfi, € F, Ifs € F with f= f, v f,) then the upper envelope of F is in
4 L{ it is finite at any point of ().

It follows from Axiom I that the restriction of a harmonic function to an open
subset of its domain is harmonic. It is sufficient to assume Axiom III only for
increasing sequences of harmonic functions; the general case then follows (see
[8])-

As in Section 1, we let w3 or just u, denote harmonic measure for x and Q. It
follows from Axioms I and II that the uniform limit of harmonic functions is
harmonic, since the integral with respect to harmonic measure of such a limit A is
equal to h.

Axiom HI is called Harnack’s principle. In 1964, Gabriel Mokobodski used
Axioms I and II and the existence of Radon—-Nikodym derivatives of harmonic
measures with respect to a fixed harmonic measure to show the equivalence of
Harnack’s principle (Axiom III) and Harnack’s inequality, given below as
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Axiom III'. His result was established for those harmonic spaces (¥, W) for
which W has a countable base for its topology. Bertram Walsh and the author
[26] extended his result to arbitrary Brelot harmonic spaces.

Axiom IIT'.  If Q is a region in W, then every nonnegative function in ¥q is
either identically equal to 0 or has no zeros in ). Furthermore, for any point
X0 € Q, the set

D2 ={hEHa:h=0 and h(x,)=1}
is equicontinuous at Xo.

A consequence of Axiom III' is the fact that for any region ) and any compact
subset K C{), there is a constant M = 1 such that for each h 2 0 in #,, and each
pair of points x; and x, in K, the relation

(1) —IAZ-h(xl)éh(xz)_S_M-h(xl)

holds. Moreover, for any point x € Q) and any constant M > 1, there is a
compact neighborhood K of x in which (1) holds.

Associated with a harmonic class # are the families of superharmonic and
subharmonic functions. Recall that a function f is lower semicontinuous on a set
A if for each x € A,

—o<f(x)= lim{inff(x).
A—{x}

DEFINITION. A lower semicontinuous function v with open domain 3 C W is
called superharmonic (with respect to %) and we write v € %, or just v € # if
v(x)< + « for some point x in each component {} and

v(x)= J' vduy
au

for each regular inner region U with U CQ and each x € U. If — w € %, then w
is called subharmonic and we write w € #. A superharmonic function whose
greatest harmonic minorant is 0 is called a potential.

For a local definition of %, see [4] or [22, p. 174]. A function h is harmonic if
and only if it is superharmonic and subharmonic. If v, and v, are in ¥, for some
open 2CW and a«a ER*, v,+ v, av, and v,Av; are in #o. To obtain a
minimum principle for %, and thus a maximum principle for %, we shall assume
hereafter that 3 satisfies the following axiom.
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AxioMm IV. The function 1 is in .

With this axiom and Axiom III, it follows that if Q is a region and v € Ko
takes a minimum value « in ), then either v = @ in  or a > 0. (See section 2 of
[22])

From this point on, we assume that W and # are fixed, and we choose a
denumerably comprehensive enlargement of a mathematical structure contain-
ing the real numbers and W.

Given x, € W, it is well known that the family

D, ={h€KHw:hz0, h(x)=1}

is compact in the u.c.c. topology. We shall need a nonstandard interpretation of
a slightly more general result. Recall Robinson’s fundamental theorem ([33, p.
93]), that a topological space A is compact if and only if for each y € *A there is
an x € A with y € m(x).

ProrosiTiON 2.1.  Given a region § C W, a point x, € Q, numbers m =0 and
M=0in R, let

F={h€Ha:—m=h on Q and h(x,)=M}.

Then % is equicontinuous on §} and compact with respect to the u.c.c. topology
which is the same as the topology of pointwise convergence on ¥. That is, given f in
the non-standard extension *% of F there is a standard h € ¥ such that on each
standard compact K C}

ysgg(lf(y)—*h(y)l=0-

Proor. Fix x; € Q. By corollary 4.2 of [22], there is a regular inner region U
with x, € U, x; € U and U CQ. Let H(1) be the function which is continuous on
U and harmonic on U with H(1)] U - U =1. Then ¢ = min,cgH(1)>0. By
Harnack’s inequality, the family

{h 1 U+ic"~H(1):h 69}

is bounded and equicontinuous at x,. Therefore the family % itself is bounded
and equicontinuous at the arbitrary point x, € £} and thus at every x € Q.
Let 9, and 7 ... denote the topology of pointwise convergence and the u.c.c.
topology respectively on the space of real-valued functions on €. The J,-closure
of &, %, is equicontinuous on Q. It is well known and easy to prove that 7, and
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T wee. are the same on an equicontinuous family such as %”. Since %° is
J,-compact, it is J,..-compact. Any point in F° is the uniform limit of
harmonic functions and is, therefore, in % Thus % = %* is compact. [

Let Q) be a region in W, and let f be an element of *#, such that f is bounded
below by some standard real number and f is finite at some standard point
xo € Q. Let h be defined on {1 by setting h(x) = °(f(x)) for each x € (). We have
just shown that h € ¥,; we shall call h the standard part of f and write h = °f.

A countable exhaustion of W is an increasing sequence of sets A;CA, - C
A, -+, with W=U7_, A, Using results in [8] and the validity of Harnack’s
inequality in an arbitrary harmonic space [26], A. Cornea has established the
existence of a countable exhaustion of W by compact sets. It follows that if
X € W and

D, ={hEHw:h20 and h(x)=1}

then @, with the u.c.c. topology is a metric space. Here we may let the metric
d =2%:_,(1/(2"¢.))d,, where for each n € N, K, is the nth compact set in a
countable exhaustion of W by compact sets,

Cn = 2su 'h(Y)”

yEK,,,hEtb,"ﬂ

and for f, h € @,
dn(ﬁh)=ysglg|f(y)—h(y)l-

It also follows from Cornea’s result and a theorem due to R.-M. Hervé and the
author ([22, p. 184]), that there is a countable exhaustion of W by regular inner
regions in W. Given such an exhaustion {Q,: n € N}, to what use can we put the
existence of (1, where y € *N — N? For this paper we will only use the fact that
the first part of the Dirichlet problem is solvable for an inner region.

DerNITION.  Let Q be a standard region in W with closure () in some fixed
compactification of W. Let f be a bounded real-valued function on Q — Q. The
upper Brelot-Wiener-Perron envelope H(f, Q) of f is the lower envelope of the
set

{v € #a:liminfo(x) 2 f(x) Vx €Q—0}.

The lower envelope H(f, Q)is — H(— f,Q). Since 1 € #w, H(f, Q) <= H(f, Q). We
say that f is resolutive if H(f, Q) = H(f, ), and we say that  — Q is resolutive if
each f€ C(Q1—Q) is, in which case H(f,Q) denotes the unique solution
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H(f, Q)= H(f, Q) of the first part of the Dirichlet problem for Q as defined in
Section 1.

ProposiTioN 2.2 (Brelot, Hervé). If Q is an inner region in W, then Q. — Q is
resolutive.

Proor. See Hervé [18, lemma 6.1} and Brelot [4, p. 111]. That the hypothesis
of Hervé’s result is satisfied, i.e., that there is a positive potential defined on Q,
has been established by the author in [22, theor. 6.8]. i

3. A solution of the Dirichlet problem

In this section we generalize N. Wiener’s solution of the Dirichlet problem
[36], [37) to arbitrary compactifications (e.g., the Stone-Cech compactification)
of the harmonic space W. For resolutive compactifications of W, the solution
agrees with that given by the Brelot-Wiener-Perron method defined in
Section 2.

DeriniTioN.  If ) is an internal inner region in *W and *K C{) for each
standard compact set K C W, then we shall say that the boundary of  is
contained in the monad of © and write 3 Cm ().

By the results of Section 2, there exists an internal, regular inner region £} in
*W with dQCm(»). For example, if W={z€C:|z|<1}, let Q=
{z€*C:|z|<1- 8} where 6§ =0, and & >0.

THEOREM 3.1. Let Q be an internal inner region in *W with 30 Cm (). Let
W be an arbitrary compactification of W, and for each f € C(W — W) let f be a
continuous extension of f to W (see [34, p. 148]). For each x € W, let

hy(x) =°(H(*f| 99, Q) (x));

i.e., by is the standard part of the internal solution of the Dirichlet problem for *f on
d€}. Then the mapping f— h; is a well defined, positive linear operator from
C(W — W) into %w with H(f, W)= h, = H(f, W) for each f € C(W — W).

Proor. Given f and f, let f be another continuous extension of f to W. For
each y € 3Q, there is a unique z € W— W with y € m(z), and so *f(y) =
f(z) = *f(y). Therefore sup,c.a|f(y)—F(y)|=8 =0, and since 1€ Hw, we
have for each x € Q)

j *fdu?—j *fdu?
a a0

é&f duf=6=0.
an
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It follows that h; is well defined. By Axiom I and Proposition 2.1, h; is harmonic
on W, and it is easy to see that the mapping f— h; is positive and linear.

Let v be a superharmonic function on W with liminfwv(z) 2 f(z) for each
z € W—W. Given £ >0, each point z € W— W is contained in an open
neighborhood U, such that v+ & —f>0 on U, N W. Since v + £ — f is lower
semicontinuous on W, the set K={x&€ W:v+¢ —féO} is compact, and
therefore K CQ. Thus *v +& >*f on 4Q, and so at each x EW, v(x)+¢e =
he(x). It follows, since & is arbitrary, that for each f € C(W — W), H(f, W)= h,,
whence H(f, W)= h; on W.

If W is a resolutive compactification of W, then h; = H(f, W)= H(f, W); i.e.,
h; is the unique solution of the Dirichlet problem for each f € C(W — W). The
Wiener compactification discussed in Section 5 is the largest resolutive compac-
tification of W.

Given Theorem 3.1, we see that the monad of a regular point is “‘unbroken” in
the sense made precise by the following result.

THEOREM 3.2. Given a resolutive compactification W of W let z be a regular
pointon W — W. If U C W is an open neighborhood of z and ) is an internal inner
region in *W with Q1 Cm (), then *U N QA # D. It follows that if z has a
countable base for its neighborhood system or if our enlargement is N-saturated
(see [28]) where the cardinal number N is greater than the cardinality of the
neighborhood system of z, then the monad of z contains a point of 3Q) for each
internal inner region Q C*W with 3Q) C m(»). In any case, if {Q1,} is a countable
exhaustion of W by standard inner regions and U is a neighborhood of z, there is
an ny € N such that for all n = no, 3Q, N U# @.

Proor. Given U, we may choose f to be a continuous function on W so that
f(z)=1and f(x)=0 for all x& U. Since z is regular, limw h;(z) = 1. If there is
an internal inner region ) with 42 Cm () and 4QN*U =, then

hy=°"H(*f|9Q,0)="H(0,Q0)=0,

but this is impossible. It follows that for a standard exhaustion {Q2.} of W by
inner regions, if there is an n € *N such that *U N 4Q, = &, then there is a last
one, and it is standard. The rest follows from the definition of saturation [28] and
the assumption that our enlargement is at least denumerably comprehensive,
i.e., N;-saturated. I

In Section 5 we establish a converse of Theorem 3.2 due to A. Cornea and the
author for the Wiener compactification of W.
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4. A construction of maximal representing measures for positive
harmeonic functions

In this section, x, is a fixed point in W, Xw={h € #w:h =0} and &, =
{h € #%w: h(xo)=1}. It was shown in Section 2 that &, as a subspace of
Hw— #w equipped with the u.c.c. topology is a metric space. Clearly @, is a
compact, convex subset of # w— ¥w. The set ,, of extreme elements of @, is
G; in @, (See [32, prop. 1.3].) A function h € D, is in &, if and only if it is a
minimal harmonic function; i.e., given g € ¥, if g = h then g = Ah for some
A z 0. Moreover ®,, is a Choquet simplex; i.e., there is a greatest harmonic
minorant of f A g for any pair f, g € . (See chapter 9 of [32].)

Let @ denote the set of probability measures defined on the Borel subsets of
®,.. Given a measure A € 2, there is a unique element h € ¢, such that for each
xeWw,

b =] T

where T, (g) = g(x) for each g € .. (See [32].) We say that A represents h, and
for any continuous linear functional F on #%— ¥ we have [o, F(g)dA(g)=
F(h). If h € &,, only §, represents h, where 8,(®,)=1 and 8, (P, - {h})=0.
(See proposition 1.4 of [32].)

A real-valued function ¢ is convex on &, if Y(af+(1-a)g)s
a(fy+ (1 — a)y(g) for each pair f, g in @, and each a ER with 0= a =1.
Given A and » in 2, we write A < v if for each continuous convex function ¢ on
®,, we have ‘

[ venw=[ wede

When A and v both represent the same h € ®,, we write A ~ ». If A < v then
A ~ v since evaluation, T,, at a point x and — T, are convex on ®,. If A < v and
v < A, then v = A since the family of differences of continuous convex functions
is uniformly dense in C(®,,).

Prorosition 4.1 (Choquet). For each h € ®., there is a unique probability
measure p, on ®,, such that p,(®,,— &,)=0 and p, represents h. If v € P also
represents h then v < py; that is, p, is the unique maximal representing measure for
h with respect to the ordering <.

Proor. See [32, chaps. 3, 4, and 9]. |
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Fundamental for this paper is a special case of a corollary due to Beno
Fuchssteiner [14] of a result of Cartier, Fell and Meyer (see [1, p. 23]). We state
as Proposition 4.2 the version of the latter result needed here. The proof given of
Proposition 4.2 and the first corollary that follows were communicated to the
author by B. Fuchssteiner.

DEFINITION.  An affine decomposition in S of a vector x in a subset S of a
vector space X isasum x = 3, ax; with 2,0, =1, x, €S, and 0= a; <1 for
each i=1,2,---,n. A mapping M is called affine on S if for each affine
decomposition x =2 ,ax; in § of an element x €S we have M(x)=
SaM(x).

ProrosiTioN 4.2 (Cartier, Fell, Meyer). Given A and v in P, suppose that for
every affine decomposition A = 3_, aid; of A in P there is an affine decomposition
v=23"a of vin P with v, ~ A, foreach i=1,---,n. Then A <v.

Proor. Let Fy,-- -, F, be an arbitrary finite set of functions of the form F+ r
where F is a continuous linear functional on #w— #wand r € R. Let G be the
convex function on @, defined by setting G(h)= max,s;=.Fi(h) for each
h € ®,, We need only show that [o, G(h)dA(h) = [s, G(h)dv(h), since the set
of all such G’s is uniformly dense in the set of continuous convex functions on
®,,. (See [1, pp. 1-3]).) Foreach i, 1=i=n, let X, ={h €®,:G(h)=Fi(h)},
Y, =X - U,..X,and a; = A(Y)). If a; =0, let A, = A; otherwise, let a:A, be the
restriction of A to Y. Each A; represents some h; € ®,,. Since A = 2], a:A; there
is for each ,1=i=n, a v, € ? such that v, ~ A, and 3™, a,», = v. Therefore

0,0 i=1 Y i=1 Y
-3 af Fdi =S aFkh)=3a[ Fay
=t Jao,, i=1 =1 ey,

éZa,f Gdy.:f Gdv. |
i=1

Px 0 0"0

CoroLLARY 4.3 (B. Fuchssteiner [14]). If M is an affine mapping of ®,, into

P such that for each h € ®,,, M(h) represents h, then for each h € &, M(h) is the
maximal representing measure for h.

Proor. Given h € ®,, assume that M(h)< A for some A € P; we must
show that A = M(h). Let A = X[, a;A; be any affine decomposition of A in P.
Then A; represents some h;, € @, for each i, 1 =i = n. For each x € W,
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Zai Tdii =2?=1a.-h.-(x).

i=1 @5

h(x)=L T.dr =

That is, h =3, ahi, so M(h)=3_1a; M(h;). Thus A < M(h), whence A =
M(h).

CoroOLLARY 4.4. If M’ is an affine mapping from the set ®., of bounded
elements of ®,, into P such that M'(h) represents h for each h € @}, then M'(h) is
the maximal representing measure for each h € @2,

Proor. The proof is the same as the one for Corollary 4.3 except we note
that if h, E®,, and 0 < o, =1 for each i, 1 =i = n, then h = 3], a;h; is bounded
if and only if each h; is bounded, since (1/a;)h = h; for 1=i=n. |

We now choose and fix an internal inner region {} C W* with 4{) C m (»), and

we let u, = ufforeach x €Q.If h € d,, and x € W, then h(x)=f *hdu,. We
an

shall use-this fact to construct the maximal representing measure for h; it is a
standard form of hdu,,

Recall that a *finite set is an internal set in one-one correspondence with an
initial segment of *N. Such a set has the formal properties of a finite set. There
exists a *finite collection {A;:1=i = y} of disjoint, internal Borel measurable
sets in 3Q with U7, A, = 4Q such that for each standard f € C(W), supa,*f —
infa,*f = 0 for each i, 1=i=1+. To show this, we imbed C(W) in a *finite
collection 4 of *C(W). Given f € 4 and § >0 with § = 0, let P, be the inverse
image under f of a *finite partition of the range of f| 3() into intervals of length
smaller than 8. The common refinement of {P;: f € %} is the desired partition of
Q.

We now let X = {A; CaQ:1=i = o} be a fixed *finite collection of disjoint,
internal Borel measurable subsets of 4 such that g (A/)>0 and
supa, *f —infa,*f = 0 for each f € C(W) and each i, 1 =i = o, and such that
po(8Q— U2, A)=0. For each A, € X, u,(A,) as a function of x is the solution
of the internal Dirichlet problem with respect to the characteristic function of A;
on 3(); let g be defined by setting g:(x) = u.(A:)/u{A:) for each x € Q. Let
X ={gi:1=i = w}, let S be the mapping from X into &, such that S(g)= g
foreach i,1 =i = w, and let Y C®,, be the image S[X]. Let o be the algebra (in
the usual sense) of internal sets in X, let #x be the smallest (external) o -algebra
of subsets of X such that #x D o, and let My be the o-algebra in Y consisting
of sets B such that S7'[B] € Mx.
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ProrosITION 4.5. The set Y C®,, is compact in the u.c.c. topology and each
Borel set in Y is an element of My."

Proor. Let {h.} be a sequence in Y, and let {K,} be an exhaustion of W by
compact sets. By taking a subsequence of {h.}, we may assume without loss of
generality that there is an h € @, such that for each n € N, supx, | h — h.| <
1/(2n). We must show that h € Y. Choose for each n € N a function f, € X such
that °f, = h,. Let {f.: n € *N} be a internal extension of the sequence {f.: n €
N}. An internal property that holds for each n € N holds for some y € *N — N.
Thus there is a y € *N — N such that f, € X and supk, |*h — f,| < 1/y. There-
fore, h = °f, € Y. (Alternatively, Y = S[X] is compact by Robinson’s theorem
4.3.12 in [33].)

We must next show that a basic open set in Y is #{y-measurable; it then
follows that the Borel sets in Y are f{y-measurable. (See [21, p. 49].) Given
e >0, K compact in W, and h € Y, we will show that

B={g€ Y:max|g(x)—h(x)|<e}E My.
x€EK
Choose f € X so that h =°f. The set

E. :{gexirxrgﬁlg’(x)—f(an—%}

is internal for each n € N, so

U, Ex = {8 € X: sup |G () = “((x))| < e € lx,

neEN

and S7'[B] = U ,cnE.. i
We now choose and fix y; € A, for each A, € X. Note that for each x € W

heo= [ h)du ()= 3 R ) ma(A)

= St h) ma) 20

Mol Ai)
That is, h is essentially an affine combination of the functions

xAl'

P = iﬂ X
87 A

" (Added in proof, April 1976.) A recent result due to Ward Henson shows that B C Y is analytic
ifft B =S§[A] for some A € M.. Therefore, My is the family of Borel subsets of Y.
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THEOREM 4.6. Given h € d,, let v, be the finitely additive real-valued
measure on the algebra o of internal subsets of X such that for each set E € A,

V»-(E)“Igz *h(y) px(As).

Then v, has a unique countably additive extension, which we also denote by v, to
Mx. Foreach B € My, let i, (B) = v,(S”'[B]). Then b, is the maximal representing
measure for h on @,

Proor. That w, is uniquely determined and countably additive on fx
follows from theorem 1 of [25]. Given x € () and letting T, denote evaluation at
x, we have

=3 Tu(g) *h () il A) = [ AT(@) din(e)

by corollary 1 of [25]. Of course, (T, (g))=°g(x) = S(g)(x) if x € W. Since only
real numbers are involved, we have for each x € W,

b= [ @y an@)= [ Tane,

Thus 7, represents h for each h € ®,,. Since the mapping h — 7, is affine, 7, is
the maximal representing measure for & for each h € ®,, by Corollary 4.3. |

CoroLLARY 4.7. If h € ®,, is minimal, then h € Y.
Proor. Only unit mass 8, at h represents h. |

As is usual in nonstandard analysis, results such as Theorem 4.6 yield standard
limit theorems of the type we now consider. Recall that a statement that can be
interpreted in both a standard structure S and a nonstandard extension of § is
either true for both or false for both.

TheoreM 4.8. Fix h € €., a compact K,C W, and ane >0 in R. “There is a
compact set K D K, such that on the boundary of each inner region 1 D K there is
a Borel measurable set Aq with u%(Aa)>0 and

sup | h(x)= ,O(An)
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Proor. By Theorem 4.6, the statement in quotes is true for some nonstan-
dard compact set K in *W with K D *K, for every standard compact set K, in
W. Therefore there is a standard compact K for which the statement in quotes is
true. |

THEOREM 4.9. Let hy, hy, -+, h, be a finite subset of ®.. Fix a.compact set
K,C W, a Borel set BC¥,, and an ¢ >0 in R. “There is a compact set K O K,
such that for each inner region } O K there is a set A C3Q with

sup
x€Kg

[, mdn - [ modut) | <e

for 1=j=n"" Here p,, is the maximal representing measure for h; on &.,.

Proor. Given  as in Theorem 4.6, we use the notations established in
Theorem 4.6. Let B = S™'[B]. By theorem 1 of [25], there is an internal
union A of elements of X such that if A ={g € X:A,CA}, then
v, (B—A)U(A — B))=0for 1 =j = n. For each x € K, and each j, 1=j=n,
we have by corollary 1 of [25],

J, o= Te) o)

[ Tendn @)= 3, T hIuda)

3 Bl ) un(A) = [ *h)dus ().

CA

By Harnack’s inequality, it follows that for 1 =j = n,

[, T d o) [ *ho)dun| <e.

sup
x€*Kg

Since the part of the statement of the theorem in quotes is thus true for some
nonstandard compact K C*W, it is true for some standard compact K C w.ll

5. Compactifications for which bounded harmonic functions have
continuous extensions

In this section we describe a resolutive compactification W of W for which the
Radon-Nikodym derivatives of harmonic measures are continuous and every
bounded harmonic function and every positive harmonic function has a continu-
ous extension to W — W. The smallest compactification with these properties is
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one between the Feller and Wiener compactifications. Here, the ordering is the
usual one for compactifications, i.e., W = W if there is a continuous map from
W onto W which is the identity on W. Since we shall give a converse of Theorem
3.2 for the Wiener compactification, and since the analysis is essentially the same
for all compactifications between the Feller and Wiener compactifications, all of
these compactifications will be considered at the outset. For the original work on
this topic in the axiomatic setting see Constantinescu and Cornea [9], Loeb and
Walsh [27], and Magea [30]; also see [7]. We follow the development in [27].

Given a collection Q of continuous, bounded, real-valued functions on W,
Constantinescu and Cornea [7] have shown that there is a unique (up to
homeomorphism) compactification W of W such that every function in Q has
a continuous extension to W< and these extensions separate the points of
W< — W. One may, following [7], adjoint Co( W), the continuous functions with
compact support in W, to Q and let W be the closure of the canonical image of
W in the product space

[inf f(x), supf(x)].
feQUCHW) Lxew xEW

A method which “works” for arbitrary Hausdorff spaces is given in [23] and [24].

Using nonstandard analysis, one can obtain W< by letting m (=) denote the
monad of the one point compactification of W (as before) and calling two points
x, y € m(=) equivalent when *f(x) = *f(y) for all f € Q. The points of W° — W
are the equivalence classes [x] and a neighborhood base for [x] consists of sets O
determined by a finite set {f,- -+, f,} CQ, a compact KC W, and an ¢ >0 in R
with

O={yEW-K:[fi(y)-°(*fi(x))| <e, 1=i=n}
U{[z]€ W2 — W:°|*fi(z) - *f(x)| <g, 1=i=n}.

The justification for this method of obtaining W is the same as that given by
Gonshore for the Stone-Cech compactification [15].

Recall that a potential on W is a superharmonic function on W with greatest
harmonic minorant equal to 0. We assume throughout the rest of this paper that
there is a positive potential and a bounded harmonic function not identically
equal to 0, defined on W. This means that 1 is not a potential, and # is
hyperbolic on W in the sense of [22]. (See prop. 5.5 and theor. 5.8 of [22].) If
there were no potential on W, then the space of bounded functions in % would
consist only of multiples of 1.

Let Py denote the set of potentials on W, and let B¥w denote the bounded
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harmonic functions on W. B¥ is a Banach lattice with respect to the sup norm
and the lattice operations V4 and A, where fAxg is the greatest harmonic
minorant H(f A g)of fag and fV »g = — H(— f A — g). The function H(1) is an
order unit for B#yw. Here H(v) denotes the greatest harmonic minorant of any
lower-bound superharmonic function v. Given two such functions v, and v,, and
given a and B € R”, we have H(av,+ Bv.)= aH(v:)+ BH(v.). (See [27, p.
284].)

DErFINITION.  Given W, the harmonic part of W2 — W s

Fo= N {z€ W2—- W:liminfp(z)=0}.
w

PEPw
REMARK. Any compactification of W is W< where Q = {f| W: f € C(W)}.

ProrosiTioN 5.1.  If v is a lower-bounded superharmonic function on W with
liminfwv(z)= 0 at each z €T, for some family Q, then v =0 in W.

Proor. Given ¢ >0, the set

A, ={z€ W°-W:liminfv(z)= — ¢}
w

is compact in (W2~ W)—T, There is a finite sum of potentials p =
pi+ - -+ p. which is also a potential such that lim infwp(z)Z  for some 6 >0
and every z € A.. Thus for some a >0, liminfw (v + ap + £)(z) 2 0 for every
z € W?— W, whence v+ ap + £ =0 on W since v+ ap + £ takes a minimum
value on W€ and a nonconstant function in 9%, cannot take a nonpositive
minimum in W. Therefore,

vtaptezH(w+ap+te)=H(v)+H(e)=0,

so v+ezZH(w)+H(e)z0, ie, v=—¢ for every £¢>0. Thus v=0
on W. |

Let DPw be the set of bounded continuous functions f on W for which there
exists a potential p, with | f| = p; on W. We now consider compactifications W
where B#w C Q C B#w U DPy; W?*w is the Feller compactification of W, and
WE*wUPPw) s the Wiener compactification of W. Let CPy denote the set of

bounded continuous potentials on W. In Section 6, we shall work with
W(B%wucpw)

ProrosiTiON 5.2. If B#w CQ CB¥w U DPy, then the restriction mapping
p:h—h|Tq is an isometric isomorphism from the Banach lattice B#w onto
C('o). The mapping p preserves the lattice operations on B¥#w and p(H(1)) = 1.



172 P. A. LOEB Israel J. Math.

Proor (from [27]). That p is an isometry into C (') follows from Proposi-
tion 5.1 and the fact that for any set A and any real-valued function f,
Supsca | f(x)|=a if and only if @ +f=0 and @ - f=0 on A. Identifying
functions with their extensions, it is clear that B¥#w separates the points of ',
Since 1 — H(1) is a potential, 1 = H(1) on I',. Similarly fA g = fA%g on T, for
each pair f, g € B#w. Since p[ B¥w] is closed, p is surjective by the lattice form
of the Stone—Weierstrass Theorem. |

Note that for all cases of Proposition 5.2, the sets I', are equivalent up to
homeomorphisms. (See [27, p. 294].) The next result is usually stated for the
Wiener compactification.

ProrosiTION 5.3. If B¥w U CPyw CQ CB¥#w U DPy, then every positive har-
monic function has a continuous extension to W°.

Proor. Fix h Z0in #y. For each n € N, n A h is the sum of a potential and
harmonic function and has a continuous extension to W, The upper envelope h
of the family {n A h: n € N} is lower semicontinuous on W<, and so h can only
be discontinuous at a point z € W2 — W with ﬁ(z) = a < + o, But in this case,
for n > a we have n A h < n in some neighborhood U of z, whence n Ah = A in
U. Thus A is a continuous extension of h on W<. : [

Finally we recall the following fact about quotients of the Wiener compactifi-
cation.

PROPOSITION 5.4. If W= W€ for B¥#w CQ CB¥w UDP and W is a com-
pactification of W with W = W, then W — W is a resolutive boundary for W. Let .
and fi. denote harmonic measure with respect to x on W—W and W - W
respectively, and let ¢ be the continuous map from W onto W such that ¢(x) = x
for each x € W. Then for each x € W and f € C(W — W) we have

[ paa=[  feodu.
w-w

W-w

Proor. Let T' and I be the harmonic parts of W — W and W — W respec-
tively. (Then ¢[I'] =T, see [30, theor. 3.1.1].) Let f be continuous on W — W
and let h be the harmonic extension of fe ¢ onT. Fix £ >0 in R. For each point
z € W — W and each neighborhood U of ¢ ~'[z] there is a neighborhood U’ of z
such that ¢ '[U’']CU ([30, p. 57]). Since points of I' are regular, there is a
potential p such that

limwinf(p +h+ie)y)Zfoe(y)

for each y € W — W, and so
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liminf(p+h +e)(z)= f(z)
w

for each z € W — W. It follows that for W,
Hf W)y=H(p+h+e)=H(p)+ Hh)+ H(e)=h + H(¢)
=h+e.
Since ¢ and f are arbitrary, H(f, W)=h and H(- f, W)= —h, i.e.,
H(f,W)=-H(-f,W)zh.
Thus, for each x € W,
[ feedu=n=HEW@=AEW@= [ fa. B

CoROLLARY 5.5. Given W and W as above, T is the support of ji, for each
x €W, and if z € W — W is regular, then z €T.

ProoF. Since T is compact in W — W and is the support of u, for each
x € W, only points of I' are regular for W — W. Since ¢[I'] =T, the corollary
now follows from the theorem. [

If B¥#w C Q C B¥w U DPy, then a point of W? — W is regular if and only if it
isin I'e If z€T'p then by Theorem 3.2 the extension of every standard
neighborhood of z intersects the boundary of every internal inner region
containing all standard compact sets. We now give a new result due to A. Cornea
and the author showing that this property characterizes the points of ', if W€ is
the Wiener compactification of W.

THEOREM 5.6 (A. Cornea, P. A. Loeb). Let W be the Wiener compatifica-
tion of W and fix z € W — W. Then z is a point of T, the harmonic part of W — W,
if and only if for each open neighborhood U of z and each countable exhaustion
{Q2..} of W by inner regions, there is an n, € N so that foralln = n,, dQ, N U# Q.
Thus if z& T there is an open neighborhood U of z and an internal inner region ()
with 3 Cm () such that *UN3IQ =,

Proor. Assume zZI and let U be an open neighborhood of z with
U NT =@. Let U, be an open neighborhood of z with U, C U, C U. There is a
potential p, on W with liminf p, =2 at each point x € U, — W. The set

K={xeW:p=1}nU,

is compact in W, and so there is a potential p, on W with p, =1 on K. Therefore,
any function on W with values between 0 and 1 which vanishes on W — U, is
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dominated by the potential p; + p, and hence has a continuous extension to W.
Let {Q2.} be any countable exhaustion of W by inner regions, and let U, be an
open neighborhood of z with U,CU,CU, such that U,N 3, # @ for all
n = n, for some n,€ N. (If no such U, exists, we are done.) Let f=0 on
30, N U, for all even j, and let f=1 on 8Q+; N U, for all odd j. Extend f
continuously to W so that 0 = f =1 and f| W — U, = 0. It now follows that f has
a continuous extension to all of W and in particular to the point z. Therefore,
there is a neighborhood U;C U, of z such that U,N §Q..; = either for
all even j or for all odd j. In any case, there is a j € *N — N such that
*UsN 3., = D. The rest follows from Theorem 3.2. ]

6. An almost everywhere regular boundary supporting the maximal
representing measures for bounded harmonic functions

In this section we establish the existence of an ideal boundary A for W such
that the points of A correspond to non-negative harmonic functions, A supports
the maximal representing measures for positive bounded and quasibounded
harmonic functions, and almost all points of A are regular for the Dirichlet
problem. The results of this section were first developed as an extension of
Section 4 using nonstandard analysis throughout. Many of the constructions and
arguments have been made “‘standard” as the section has been refined, but the
original intuition should be acknowledged.

Recall that we are assuming the existence on W of a positive potential and a
bounded harmonic function not identically equal to 0. Let Q be the set of
bounded harmonic functions B#w together with the continuous bounded
potentials on W. We shall work with the compactification W which we denote
by W; we let I' = I'o. The reader can, if he or she chooses, assume that W is the
Wiener compactification; our choice of W is the smallest compactification
yielding the desired results.

Fix a point x, € W. For each x € W, let u, denote harmonic measure on
W — W, the support of u. is I'. Given x € W, the Radon-Nikodym derivative
du./du,, is bounded and bounded away from 0 on I'; the bounds can easily be
obtained as the constants for Harnack’s inequality associated with W and the
compact set {x,, x}. Moreover, if h is the upper envelope of any family {h_}
directed by increasing order in B#y,, and if h is bounded, then h € ¥ by Axiom
III, and

h(xo) = sup h,(x,) = sup fr hodp,, = fr hdu,,= h(xo).



Vol. 25, 1976 IDEAL BOUNDARIES IN POTENTIAL THEORY 175

It follows (see remark 2 on page 293 of [27]) that du,/du,, is equal to a
continuous function on I', u,-almost everywhere. We may therefore assume that
du./du,, is the trace on I' of a bounded harmonic function of y, r(x, y). That is,
we set

r(x,y)= fdu dumd#m

for each pair x, y € W. Given x, y € W, we may assume that r(x,-) and r(-, y)
are continuous on W; clearly r(x,y)=r(y, x).

Let Q = {r(x, - )E B¥#w:x € W}, and let W = W9 Let ¢ be the continuous
mapping of W onto W such that for x € W, ¢(x) = x, and for z,,2,€ W — W,
¢(z1) = ¢(z,) if and only if r(x, z,) = r(x, z,) for each x € W. The compactifica-
tion W is the type of compactification considered by Thomas E. Armstrong in
chapter 11 of [2]. The results in [2] have little relation, however, to those we shall
now obtain, except that Proposition 6.1 can be obtained as a corollary of results
in [2]. (In an unpublished manuscript, Stuart P. Lloyd has considered similar
quotients of just the harmonic part of the Feller boundary from a probabilistic
viewpoint.) Note that the compactification W does not depend on the choice of
xo since du,/du,, = du,/dp,| dp, /du,, for any point x; € W.

Given x € W, we let q(x,-) denote the continuous extension of r(x,-) to W
and q (-, x) denote the continuous extension of r(-, x) to WIfxEW zeW,
and z' € W with ¢(z')= z, then

q(x,z2)=r(xz)= lm r(x,y)= lim r(y,x)=r(z',x)=q(z,x).

YEW,y—>z' YEW,y—>z’
Let A= W~ W, and let T be the harmonic part of A. Given x € W, let i,

denote harmonic measure on A with respect to x; by Corollary 5.5, the support
of i, is I'. Let

b ,=heHw:h>0 and h(x,)=1},
and let
&, ={h€Hw:h=z0 and h(x))=1}.

.

Both ®,, and ®;, are compact in the u.c.c. topology by Theorem 2.1. We now
show that the function g(x,y) on W X W has many of the properties of the
Poisson kernel for the unit disc.

ProposITION 6.1.  The function q(x, y) on W X W has the following properties :

i) ifx €W, q(x,-) is continuous on W, harmonic on W, and 0 < q(x,x0) = 1.
Moreover, q(x,-)|A represents the Radon—Nikodym derivative di./dgi.;

i) if z€A, q(-,z) is harmonic on W, and q(x,,2)= 1,
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iii) the mapping T:x — q(-, x) from W into ®. is continuous with respect to
the u.c.c. topology on @,
Ifz,,2,€ A and z, # z,, then T(z,) # T(22). Thus T | A is a homeomorphism from
A onto a subset of ®;, and so A is a metric space;

iv) if z €T, q(xo, 2) = 1. Thus T |T" is a homeomorphism from T' onto a subset
of ®.. If 1 is harmonic, q(x, xo) =1 for all x € W.

Proor. To prove (i), fix x € W. By definition g (x. - ) is continuous on W and
harmonic on W. Moreover,

du,
40050 = 1050 = | 2= duoy= | du = HO 0,
r Qi r
and 0 < H(1)(x)=1. By Proposition 54, if f€ C(A) and x € W, then

[ 1086 di) = | 0D 2) dunta)

- [ foo@due)= [ fdicr).

It follows that q(x,-) is a representative of dg./dgi., on A.

To prove (ii) and (iii), let Tw be the restriction to W of T. Given a finite set
X, ¥, y. in Wand £ >0 in R, there is a neighborhood U of x such that if
x'€U and 1 =i = n, then|q(x', y.)— q(x, y:)| < &. It follows that Ty is continu-
ous with respect to the topology of pointwise convergence on @, , which is the
same as the u.c.c. topology on ®;, by Theorem 2.1. Since &, is compact, we can
imbed W in a unique (up to homeomorphism) compactification W such that Ty,
has a continuous extension to W, Tw: W—»dl';o, and Ty separates the points of
W — W. To do this, we use the method of [23] or the analogue of the methods
described in Section 5. For each z € W, let §(z,-)= Tw(z). If z E W, §(z,*) =
q(z,-)=r(z,). Given zEW-W, £ >0 in R and x € W, {x} is compact, so
there is a neighborhood U of z in W with the property that for any z' € U,
[4(z',x)— §(z, x)| < &. Therefore, §(-,x) is a continuous extension to W of
r(-,x) on W. Moreover, the functions {G(-, x): x € W} separate the points of
W — W. By the definition of W, there is a homeomorphism ¢ from W onto W
with ¢(x) = x for each x € W, and for each z € W, q(z,-) = §(¥(z), - ). Clearly
(i1) and (iii) now follow.

To prove (iv) note that for each x € W,

q(x, Xo) = r(x, xo) = fr du, = H1)(x).

Since H(1) is equal to 1 on T, r(z, x,) equals 1 for each z ET. If y €T, there is a
z €T with ¢(z)=y (see [30, theorem 3.1.1]), so
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q(x0,y)=q(y, %) =r(z,x0)=1.

If 1€ %w, H1)=1, s0 q(-,x0)= 1. [

We next establish an important difference between A and the boundary of
R. S. Martin [29]. M. G. Shur has shown in [35] that there can exist a minimal
irregular point z on the Martin boundary such that {z} has positive harmonic
measure. It will follow from the next result and Theorem 6.4 that this cannot be
the case for A.

DEFINITION. A point z € A is called minimal if g(z,-) is minimal.
THEOREM 6.2. A minimal point z € A is regular if q(z,x0) = 1.

ProoF. We give a nonstandard and a standard proof. For each x € W,
A (C)=1, so {ji.: x € W} is compact in the *weak topology for Borel measures
on I". Let 8, denote the probability measure on A such that 8, (A — {z})=0. Then
z is a regular point if and only if lim,cw..—. . = 8, in the *weak topology. This is
the case if for each nonstandard y € m(z), 8, is the standard part °f, of i, with
respect to the *weak topology. But for each standard w € W we have

f *q(s, w) dii, (s) = *q(y, w) = q(z, w).

Therefore,

[ aew e =acw

for each w &€ W, and letting w = x, we have [rd°d, =1. Since °i, is a
probability measure on @, and °ft, represents the extreme element g(z, - ) in @,
°d, = 8,. (See [32, p. 8].)

A standard version of this proof is obtained by taking an arbitrary net x,
converging to z in W and letting v be a *weak cluster point of the net g,. We
must show that » = §,. There is a subnet {xs} of {x.} such that foreach w € W,

[ awavs)=tim [ aw)du,©)

=lim q(xg, w)=q(z,w),
B

and frdv = q(z, xo) = 1. Since v is a probability measure on ®,, and v represents
q(z.+), v=28.. [

ExampLE. We show the assumption in Theorem 6.2 that g(z, x,) = 1 cannot
be omitted. Consider the space W = {x € R:0 < x < + o} with ¥, consisting of
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all linear combinations of the functions e* and 1+ e™™ on Q for each open
interval Q C W. Here, 2—(1+ e *)=1—¢"" is a potential on W, and {0} is the
harmonic part of W. Let xo = 1. Then p,({0}) = (1 + e~*) for each x € W and so
wo({0) =3(1+e7"). Given x,y € W,

1 anflte ™ [1+e™
r(x,y)= I_I*__Exd =3(1+e )(1+—:’"> <1+Z_,),

and r(0,x)=(1+e *)/(1+e™") while

1+e”*
1+¢7!

r(+ooyx)=% =%r(0,x).

Therefore, A = {0, + =} and gq(+ o, - ) is minimal, but + « is not a regular point
of A.

Recall that an unbounded, positive harmonic function & on W is called
quasibounded if it is the limit of an increasing sequence {h,} of bounded
harmonic functions. Let h and h, also denote the continuous extensions of these
functions to W. Given w € W, we have

h(w)=Ilimh,(w)=1im hd,u,w_]. hdy..

n—sco noo T

=lim | (ham)du, =limHh am)(w)=h(w).

m—x JT m—swo

Therefore, for each w € W,
how)= [ hdun = [ I 0uw) duaty).
DEeriNiTION.  For each h € %3, let v, be the measure on " defined by setting

wm(A)= hdu,

e ’[a]
for each Borel set A CT.

THeOREM 6.3. If h € @, is bounded or quasibounded, then v, considered now
as a probability measure on the set{q(z, - ): z € I'} C®,, is the maximal represent -
ing measure for h.

Proor. For each w € W,

b= [ 10w h0) dua) = [ aGw)duta).
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That is, v, represents h on ®,,. The mapping h — v, is affine, so, by Corollary
4.4, v, is maximal if h is bounded. If & is quasibounded and A is a Borel subset
of f, then

v (A)= lim (h Am)du,=lim vy ,m(A).
m—x I‘ﬂw'l[A] m—o
For each m € N, vyu.m is supported by extreme points &, of ®,, so v, is
supported by &,,. Therefore v, is maximal. [

THEOREM 6.4. Almost all points of A with respect to harmonic measure are
minimal points in T and are therefore regular.

Proor. If A is a Borel set in [, then it follows from Proposition 5.4 that
Ao(A) = (¢ '[A]). Therefore

vuo(@)= | Hdun= |

rne'A]

o1l dps, = jA Az, = fi(A)

for each Borel set A CI". That is, v ) = px. Let ¢ = H(1)(xo). Then py, = vaa =
CV.~'uay is supported by the minimal point of I'. Thus harmonic measure for each
x € W is supported by the minimal point of I', and these are all regular points by
Theorem 6.2.

When it exists, the Martin compactifications of W may be quite unlike the
compactification W. For example, given % and a positive h € #u, the class
#H/h ={f/h:f€ H} is a harmonic class (see [4], [5], or [22]) with the same
Martin boundary for W as #. If h is minimal, however, the only bounded
elements of 9 /h are multiples of 1. In this case, I is a single point and W is the
one point compactification of W.

We consider now under what circumstances A is the support of the maximal
representing measure for every h € @, that is, under what circumstances the
family {g(z,): z €T} D %,. We also give a criterion for W — W to be a given
boundary for W, e.g., the topological boundary. An application of this criterion
to the open unit disc D ={z € C:|z|<1} shows that D is the closed disc
{z € C:|z | =1} which is the Martin compactification of D.

Note that if  is an internal disc {z € *C:| z | < M} contained in the extension
*D of the unit disc D, with M <1 and M = 1, then for each y € 3Q there is an
a € *[0,27] such that y = Me™ and °y = e'™. The value of the extension of the
Poisson kernel at each point y € 4Q and z =re® €D is

M’ -7 _ 1-r
M*—2Mrcos(8 —a)+r> 1—2rcos(8—"°a)+r*"
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Here, the right side is the value of the standard Poisson kernel at °y and z. These
facts suggest the following general result.

THEOREM 6.5. Let W be a resolutive compactification of W. Assume that for
each x € W there is a continuous real-valued function p (-, x) on W — W such that
for each z € W-w, p(z,")E®,, and if z, and z, are distinct in W — W,
p(z1,-)# p(z2,+). Then the mapping z—>p(z,-) is a homeomorphism from
W — W onto a subset of ®,,. Also assume that there is an internal inner region
QC*W with 3Q Cm () such that for each standard x € W there is an internal
representative w(-,x) of the Radon-Nikodym derivative du.$/du? on 4 with
‘m(y,x)=p(S(y), x) for each y € 3(), where S(y) is the standard part of y in
W — W. For each h € ®,,, let a,, be the internal measure on the collection o of
internal Borel subsets of 3€) such that for each A € A,

a’;.(A)=f *hdud,.
A

Let °oy, be the unique extension of o, to the smallest (external) o-algebra M in 3§}
with M D A. (See [25].) Then the mapping S is measurable with respect to the Borel
sets in W— W and the o-algebra M, and if for h € ®, and each Borel set
BCW— W we set

pn(B)="on(S'[B]),

then p,, is the maximal representing measure for h on ®,,. Moreover, W and W are
equivalent compactifications of W (i.e., W = W and W = W) if for each x € W,
p(-,x) is the restriction from W to W — W of a continuous function which is
harmonic on W. In this case, p(-,x)=q(-,x) for each x € W, and the set
{q(z,+): z € A} D &,

ProoOF. As in the proof of Proposition 6.1, the one-one mapping z — p(z, -)
is continuous with respect to the topology of point-wise convergence which is the
u.c.c. topology on ®,, so the mapping is a homeomorphism.

Let K be a compact subset of W — W and let {U,} be a decreasing sequence of
open neighborhoods of K with (M, U,=K such that for each
z € (W — W)— K, there is an open neighborhood V of z and an n € N with
V N U, = . Since W — W is a metric space and there is a countable exhaustion
of W by compact sets, such a sequence exists. For each n € N, *U, N Q) € o,
and so K'=,cn(*U, N3N E M. If y €9Q and S(y)EK, then yE*U, N
dQforeach n€N,soyeEK' . If y€ad and S(y)Z K, Then thereisan EN
and an open neighborhood V of S(y) such that VN U, =. Since y €E*V,
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y&*U,, and so y& K'. Therefore, S7'[K] = K' € M for the arbitrary compact
set KCW— W, and so S is measurable.

Given h €®,, and p, on W — W, it follows from theorem 3 of [25] that for
each x € W,

[ pendn@=[ rondan

= [ 0.0 h ()t = ).

Since p, thus represents h and the mapping h — p, is affine, p, is the maximal
representing measure for h by Corollary 4.3.

Assume now that for each x € W we can extend p(-, x) so that p(-,x) is
continuous on W and harmonic on W. Since the functions {p(-,x):x € W}
separate the points of W — W, W=W. Let § be the continuous map from W
onto W with ¢(x)=x for each x € W. For each y € 39, let °y denote the
standard part of y in W — W, and as before let S(y) denote the standard part of
y in W — W. Given y € 3 and a standard open neighborhood U of ¢ (°y)in W,
since ¢ '[U] is a neighborhood of °y, y €*U, and so S(y)= ¢(°y). It follows
that for each x € W, p(¢(°y), x)="°"m(y, x). Let f be a continuous function on
W — W. Without loss of generality, we may assume that f is the restriction to
W — W of a bounded h € ¥, Fix x € W. For each y € 40,

*p(y, x)=m(y,x).
Therefore, by Theorem 3.1

| p@@) 0@ un2)= [ *p o 0Ih)dus0)

= 700 h0)dus0) = hx).

It follows that p(-,x)° ¢ is a continuous representative of du,/du., on W — W,
and so

p(,x)°¢=r(,x)
on W. Therefore, W and W are equivalent compactifications of W since they
are both the Q-compactification for Q = {r(-, x): x € W}. The rest is clear.l]

CoroLLARY 6.6. If W is the open disc {z € C:|z | <1} and ¥ is the family of
harmonic functions on W in the usual sense, then W ={z € C:|z|=1}.
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For a more general result than Corollary 6.6, one can use Hunt and
Wheeden’s paper [19] which shows that the Martin compactification coincides
with the Euclidean compactification for any bounded Lipshitz domain  in a
Euclidean space. Moreover, every bounded harmonic function is the integral of
an L_ function (with respect to harmonic measure) on 4(}, all points of 3} are
regular, and given x, € (), for each x € ), du, /du,, is continuous on 4. Since
these Radon-Nikodym derivatives separate the points of 4(, it follows that the
Euclidean closure ) is the compactification Q) considered here.

The use of the measurability of the standard part map in the proof of Theorem
6.5 occurred much later than its use in the proofs of Proposition 4.5 and
Theorem 4.6. In the meantime, this device has been used by Robert M.
Anderson in the article appearing in this volume for a construction of Wiener
measure and a construction of Lebesgue measure on [0, 1].

A generalization is given of the radial limits considered in Fatou’s Theorem by
the notion of fine limits at points corresponding to minimal harmonic functions.
The following definition of a fine limit is due to K. N. Gowrisankaran [16]; it was
suggested by the classical concept of L. Naim [31].

DernviTION.  Let h be a positive minimal harmonic function and let E be a set
in W. The function R7% is the lower envelope of all positive superharmonic
functions v on W such that v = h on E. The set E is called thin with respect
to h if Ry = h (in which case, 0 is the greatest non-negative harmonic
function on W majorized by R%). The fine filter %, at h is the filter formed by
the family of sets whose complements are thin with respect to h. A function on
W has a fine limit at & if the limit with respect to the filter %, exists. (See Brelot
[6] for more details.)

We shall need the following application of a generalization of Fatou’s theorem
due to L. Naim and J. L. Doob in the classical case and K. Gowrisankaran [16} in
the axiomatic framework employed here. (Gowrisankaran’s assumption that W
has a countable base for its topology is not needed for this result. Also see
Armstrong [2, chap. 11].) Recall that (., is the representing measure for the
greatest harmonic minorant of 1 on P,

THEOREM 6.7 (Fatou-Naim-Doob-Gowrisankaran). If fZ0 is a (fi,-
integrable function on A and

hoo= | f)atz x) ditz)

for each x € W, then the fine limit of h exists and equals f(z) for {1.-almost all
z €A
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It is well known that the functions h for which Theorem 6.7 is applicable are
the bounded and quasibounded functions in # . Our construction of A yields a
brief proof and an interesting consequence of this fact. The generalization of
Theorem 6.8 to the differences of nonnegative harmonic functions is left to the
reader.

THEOREM 6.8. Let h be a nonnegative real-valued function on W.
i) If there is a Borel measurable function f Z0 on A such that

he= [ 400 f0) dity)

for each x € W, then h is a bounded or quasibounded harmonic function on W
withh=Miff=M.

it) If h is a bounded or quasibounded harmonic function on W and v, is the
maximal representing measure for h on A, then v, is absolutely continuous with
respect to fi., and, of course,

b= | 4000 (B2 ) diay).

iti) Assume the hypothesis of (i) hold and f = dv,/dj,, on A. There is a Borel
set B CI' with u(B)=0 so that if z,2,ET'— B and ¢(z,) = ¢(z.), then

h(z))=h(z;)=feoe(z))=fe@(z:).

PrOOF OF (i). Since for each x € W,
M k@)= [ 4000 da) = [ a0 @)dun),
h is harmonic on W, and since
b= lim [ r(zx) (Foe am) (2) dia2),
h is either bounded or quasibounded. If f = M, then for each x € W,
b= [ 40.070)dae) =M a0 0)di )
=M[ 400 dvay) = ME@) (1) = M.

Proor of (ii). If h is a bounded or quasibounded harmonic function and A
is a Borel set in A with (,(A)=0, then by Theorem 6.3
3

i
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w(a)=[ | hEdu)=0

since

[ = da=0.
roe '[A] A

ProoF OF (iii). If h is a bounded harmonic function and f = dv,./dji,, on A,
then Equation (1) holds. Let g be the continuous function on I' such that
g = fe¢ p.-almost everywhere on I'. Then for each x € W,

| e ng@) du@) = [ r@xh@ i),

sog=h|l.Let B={z €T:h(z)# foe(z)}. Then p,(B)=0 and for each pair
z1,2, €T — B with ¢(z,)= ¢(z:), we have
h(z:)= fle(z)) = fle(22)) = h(z2).

If h is quasibounded, let h, be an increasing sequence in B#w with limit h.
For each n € N let f, = dw,,/dgi,, on A and let B, be the null set in I' described
above for h, and f.. Then h(z)=sup.h.(z) for each z €T, but

h(xo)=lim | hudps= f (Sup h,.) du, = f hdu., = h(xo).
r n r

n—oo JI

Therefore, if
B = {z er: h(z);ésuph,.(z)} u O B..,
then . (B)=0; for z,,z,€T - B with ¢(z:) = ¢(z2) we have

h(z))=limh,(z,) =lim h,(z2) = h(z2)

n—»

= (SliPﬁ-)W’(ZI): <51:pfn>°¢(22)' i

Part (iii) of Theorem 6.8 was suggested by a result of T. Ikegami (lemma 2 in
[20]) obtained for the Martin boundary. We now give a method of computing
fine limits of bounded functions using an arbitrary internal inner region {} with
adCm(»).

DEerFINITION.  Given any g € ®,, and an internal inner region Q C*W with
30 Cm(»), let
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‘g(g,ﬂ)-—'{ACW: *gdp,i‘(,zl}.

ANU*A

THEOREM 6.9. For each g € ®,, and internal inner region QCW with
AN CM(x), 4(g, Q) is a filter in W. If g is extreme in ., 4(g, ) is a filter finer
than the fine filter ¥, at g. If f is a bounded real-valued function on W and f has a
limit a with respect to 9(g, (}), e.g., if the fine limit of f exists at g and is a, then

o[ et
a8l
Proor. Given A,B€ %(g, ), since [xn*gdus=g(x)=1, we have
fan—A*gd/-L?ozo and fan—B*ngJ-?o:O, whence fannAnt*dﬂa?oz 1. It follows
that 4(g, Q) is a filter. If g € €, and W — B € %, then for each v € %, with
v=g on B, we have *v =*g on *B N3}, and so for each x € W

hoo= | tgdut=RI).
a0QN*B

Therefore the harmonic function h =0, and so W-Be& %(g, ). Thus
(g Q)D %,

Let f be a bounded real-valued function on W, and assume that f has limit «
with respect to 9(g, ). Then for any ¢ >0 in R,

A =xeEWia-e<f(x)<a+e}€E %),

and so
a—e=G-o)[ cgduls| tgridut=[ vgtfaus,
a0N*A, aIN*A, an

:j *g *fd#?o§(a+€)f *eduft=a+e.
a0nA, 2an*A,

Since ¢ is arbitrary in R,

= [ fgdus. ]
an

CoroLLARY 6.10. If f is a bounded function with fine limit a at an extreme
element g € ®,, and if {Q.} is an exhaustion of W by inner regions, then

a = lim fgdusy.

o J 20,

CoroLLarY 6.11. Fix an internal inner region Q) with 3Q Cm(») and an
exhaustion {Q,} of W by standard inner regions. Given h € B¥y, let
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@)= | hOY eyt

each z € A. Then f, represents dv./dj., the mapping h — f, is linear, and

fue)=tim [ B9 du )

for fio-almost all z € A.

Proor. See Theorems 6.7 and 6.9. i

In conclusion, we note that the existence of W and the theory developed here
have been established for a hyperbolic harmonic space W satisfying Axioms
I-IV. Additional axioms, e.g. proportionality of potentials with point support,
are needed to obtain the Martin compactification of W.
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